Agricultural Risk Management: practices and lessons learned for development

K-Sharing & Learning Workshop
25th October 2017
IFAD HQ, Rome, Italy
Managing risks to improve farmers’ livelihoods
Workshop Report

Agricultural Risk Management: practices and lessons learned for development

K-Sharing & Learning Workshop

VOLUME II
PRESENTATIONS

IFAD HQ, Rome - Italy | 25 October 2017
Contents

Panel A: Fostering integration of ARM into policies ... 3
Presentation A.1: Adaptation to climate change, disasters prevention and agricultural development for food security - ANADIA ... 4
Presentation A.2: Rural Resilience Initiative ... 11
Presentation A.3: Farm Risk Management for Africa - FARMAF 13

Panel B: From germination to the market: transforming risks into opportunities 22
Presentation B.1: Commodity exchange trading in Ethiopia .. 23
Presentation B.2: Integrated grain value chain lending and insurance 30
Presentation B.3: ACRE Africa’s Replanting Guarantee ... 33

Panel C: Using farm practices to manage risks ... 37
Presentation C.1: Hydroponic grass... 38
Presentation C.2: Farming with Indigenous Micro Organisms 43
Presentation C.3: Assisted Natural Regeneration ... 62

Panel D: Innovation against climate and biological risks .. 65
Presentation D.1: Picture-based insurance .. 66
Presentation D.2: Bima Mamo Climate and agro-insurance .. 72
Presentation D.3: Agro-met tools ... 76

Panel E: Accessing information to manage risks .. 82
Presentation E.1: Digital inclusion ... 83
Presentation E.2: EMPRES-i/EMA-i ... 89
Presentation E.3: Plantwise ... 101

Panel F: From insurance to social protection ... 107
Presentation F.1: CADENA (a Programme of the Mexican Government) 108
Presentation F.2: Agricultural Index Insurance: Feed the Future Innovation Lab for Assets & Market Access .. 116
Presentation F.3: Weather Risk Management Facility .. 123

Panel G: Managing climate and market risks at macro and micro levels 135
Presentation G.1: RIICE ... 136
Presentation G.2: Climate Smart Villages .. 140
Presentation G.3: eGranary ... 144
Panel A: Fostering integration of ARM into policies

This panel brought together three initiatives aiming at the mainstreaming of ARM into national policies. They encompass capacity building at various levels, risk assessments and the support of governments in drafting and implementing ARM policies.

Presentation A.1: Adaptation to climate change, disasters prevention and agricultural development for food security- ANADIA
Vieri Tarchiani, IBIMET

Presentation A.2: Rural Resilience Initiative
Fabio Bedini, WFP

Presentation A.3: Farm Risk Management for Africa - FARMAF
Gideon Onumah, NRI
Presentation A.1:

Adaptation to climate change, disasters prevention and agricultural development for food security - ANADIA

Vieri Tarchiani, IBIMET

ANADIA is:

A bilateral project Italy-Niger
A training&research for development project
First phase 2013-2016, second phase 2017-2020
Implementing Organization: IBIMET-CNR
Partners: National Directorate of Meteorology of Niger,
Polytechnic and University of Turin, Italy
Collaborating Organizations: WMO, UNDP
Funding: Italian Agency for Development Cooperation
ANADIA aims to:

“strengthen the capacity of stakeholders at national, regional and local level to mainstream climate change adaptation and disaster risk reduction in decision making from national to farm scale”.

Postulate: better risk knowledge to better risk management

ANADIA focuses on:

Drought

Floods

ANADIA Approach

Training goal: to stimulate collaboration between the different institutions involved, to identify and adapt appropriate methodologies to the specific context.

Trainers role: to provide examples of methodology and to stimulate discussion and the active participation of stakeholders to integrate new approaches in their own field.

Participants role: to define the contents of the training and / or build the application process.
Example of application at mesoscale

Flood risk management, an essential tool for risk assessment and management strategies, a nation wide database on floods events and damages from 1998.

localités touchées par inondations personnes sinistrées

Example of application at local scale

Local scale risk assessment

11 communities (first phase and further 9 in the second) among those most affected by different types of floods (river, flash floods) and by drought. Risk assessment integrating scientific and local indigenous knowledge:
- Literature, quantitative measures and hydrometeorological and GIS analysis tools
- Community workshops and participatory mapping, risk perception and mitigation strategies
Example of application at local scale

Agrometeorological Services for smallholder farmers

AS, within the WMO approach, are:
- Training and rain-gauges to farmers (through RS),
- Sowing calendar to be used in association with observed rainfall (through RS),
- Weather and Seasonal forecasts, expected sowing periods advice (through RS, local media and extension services),
- 10-days agrometeorological advices (through local media and extension services).

Agricultural Innovation System

1. Multidisciplinary Working Groups (bridging the gap between climate and agricultural communities)
 National/local
2. Local extension service, NGOs, rural radios and other local actors to disseminate the innovation.
3. Model farmers training + rain gauge + sowing calendars to choose suitable planting dates and appropriate crop varieties. Charged with the role of supporting the whole farming community in their area.
Conclusions

1. Improved Climate services for key stakeholders can be provided according to the scale by strengthening the relation between local and national technical services.
2. Agrometeorological Services for farmers are more effective where the AIS is stronger and integrates multiple actors at both local and national level,
3. Integration of scientific and local knowledge ensures greater added value to climate services (objectivity + trust + sustainability).
4. Need to improve impact assessment, including economic implications, behavioural changes and social aspects of innovation.

Thank you
Traditional and informed decision-making

<table>
<thead>
<tr>
<th>Practice</th>
<th>Traditional decision</th>
<th>Agrometeorological services</th>
<th>Main advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land preparation</td>
<td>Soil moisture, empirical knowledge, indigenous indicators</td>
<td>Advice based on seasonal forecasts and crop calendar</td>
<td>Reduces weeds cover before sowing</td>
</tr>
<tr>
<td>Crop variety choice</td>
<td>Locally available varieties, good taste and marketable</td>
<td>Advice based on seasonal forecasts and crop calendar</td>
<td>Crop cycle better fits seasonal pattern (season length, dry spells)</td>
</tr>
<tr>
<td>Sowing</td>
<td>First rain, indigenous indicators</td>
<td>Rainfall on the rain gauge according to specific thresholds and in relation to the sowing calendar and weather/seasonal forecasts.</td>
<td>Avoids sowing failures, re-sowing, coincidence of most vulnerable crop stages with dry spells</td>
</tr>
<tr>
<td>Weeding</td>
<td>Abundance of weeds</td>
<td>Phenological phase, soil moisture and weather forecasts.</td>
<td>Reduces weeds growth</td>
</tr>
<tr>
<td>Fertilization</td>
<td>Late development, weak plants, yellow leaves</td>
<td>Phenological phase, soil moisture and weather forecasts.</td>
<td>Avoids fertilizers leaching and crop scorching</td>
</tr>
<tr>
<td>Pesticide treatments</td>
<td>Level of crop damage</td>
<td>In case of outbreaks, according to weather observation and forecasts</td>
<td>Avoids pesticides leaching</td>
</tr>
</tbody>
</table>

A pilot farmer in Tera, Niger, said

"Yes we trust this information but more often there are social burdens in our environment that stop us applying the advice on the optimum sowing calendar. In fact we do not want to lag behind and be marginalized, we want to avoid the judgment of others who think we do not trust God if we do not sow after the first rains like everyone else".

ANADIA
Vieri Tarchiani
SWOT (from impact assessment 2015)

- **Strengths:** reduction of N° of sowings (-20%) and crop failures, increase of yield (+22%), diffusion of weather and climate information, collaboration
- **Weakness:** dataset for impact assessment (statistical relevance of results), adoption at scale level, project approach
- **Opportunities:** ICT in information and advices dissemination; integration with traditional knowledge, synergies with other elements of the AIS
- **Threats:** ratio farmer/extensionists and extension of cropping area, cultural and social barriers
Presentation A.2:

Rural Resilience Initiative

Fabio Bedini, WFP

R4 Rural Resilience Initiative

BUILDING RESILIENCE TO CLIMATE CHANGE FOR LONG-TERM FOOD SECURITY AND LIVELIHOODS IMPROVEMENT

More than 1.2 billion people in the developing world live below the poverty line and depend on agriculture for their livelihoods. Vulnerability to climate-related shocks is a constant threat to their food security and wellbeing. Strategies for reducing and mitigating risks are therefore essential to overcome hunger, achieve food security and enhance resilience.

ABOUT R4

The World Food Programme (WFP) and Oxfam America (OA) launched the R4 Rural Resilience Initiative (R4) in 2011 to enable vulnerable rural households to increase their food and income security in the face of increasing climate risks. R4 builds on the initial success of the Horn of Africa Risk Transfer for Adaptation (HARTA) initiative, pioneered in Ethiopia by OA, the Relief Society of Tigray (REST) and Swiss Re.

R4 currently reaches over 43,000 farmers (about 200,000 people) in Ethiopia, Senegal, Malawi, Zambia and Kenya through a combination of four risk management strategies: improved resource management through asset creation (risk reduction), insurance (risk transfer), livelihood diversification and microcredit (prudent risk taking) and savings (risk reserves). Between 2015 and 2016, as a consequence of the El Niño phenomenon, about $456,000 in payouts were distributed through the initiative in Ethiopia, Senegal and Malawi. In 2017, R4 is expanding also in Zimbabwe.

R4 aims to help communities become more resilient in the face of increasing climate variability and shocks. Thanks to R4’s comprehensive risk management scheme, communities will be stronger in the face of disasters. They will be able to invest in new seeds and fertilizer to guarantee food is on the table all year long. Protected by insurance, households won’t need to sell their assets or take their children out of school in case the same fail.

WHAT’S INNOVATIVE ABOUT R4?

- R4 has broken new ground in the field of climate risk management by enabling the poorest farmers to pay for crop insurance with their own labor.
- Farmers can access insurance by paying with their labor through Insurance for Assets (IFA) schemes. When a drought hits, compensation for weather-related losses prevents farmers from selling productive assets and stimulates faster recovery.
- IFA schemes are built into either existing government social safety nets or WFP’s Food Assistance for Assets programme. Assets built through risk reduction activities promote resilience by steadily decreasing vulnerability to disaster risks over time.
- Insurance facilitates access to credit at better rates, serving as collateral. Households can invest in riskier but more remunerative enterprises, as well as in seeds, fertilizers and new technologies to increase their agricultural productivity.
- Participants establish small-scale savings, which are used to build risk reserves. Savings help build a stronger financial base for investing – but also act as a buffer against short-term needs and idiosyncratic shocks, such as illness and death.
- To ensure long-term sustainability, R4 contributes to the creation of rural financial markets, by building local capacity and gradually transitioning farmers to pay for insurance in cash.
R4 Rural Resilience Initiative
BUILDING RESILIENCE TO CLIMATE CHANGE FOR LONG-TERM FOOD SECURITY AND LIVELIHOODS IMPROVEMENT

THE INITIATIVE IS HELPING IMPROVE FARMERS’ RESILIENCE

IMPACT EVALUATIONS RESULTS

- In Ethiopia, insured farmers saved more than twice than those without any insurance, and invested more in seeds, fertilizer and productive assets, such as plough oxen.

- Women, who often head the poorest households, achieved the largest gains in productivity, through investing in labor and improved tools for planting.

- In Senegal, after two years of bad harvest, R4 farmers were able to maintain their food security compared to others exposed to the same risks.

Our vision: 500,000 insured farmers in 2020.

COLLABORATION

The R4 Rural Resilience Initiative is a strategic collaboration between the World Food Programme and Oxfam America, with no commingling of funds. Each partner has its own sponsors as listed. R4 is inviting donors to support expansion.

Climate and Disaster Risk Reduction Programmes Unit, Policy and Programme Division

© 2017 All Rights Reserved.

Photocredit: IR / Michael Norton
Presentation A.3:

Farm Risk Management for Africa - FARMAF

Gideon Onumah, NRI
WHAT IS FARMAF?

FARMAF or the Farm Risk Management for Africa Project promotes and facilitates enhanced access to innovative tools and methods for managing risks in the farm sector in Africa.

The FARMAF project ran from 2011-2016. It was implemented by AGRINATURA-EEIG in partnership with eight African farmers’ organisations at national, regional and continental levels. Funded by the European Union and AGRINATURA, FARMAF was initially carried out in Burkina Faso, Tanzania, and Zambia, with the goal of transferring lessons learnt to other countries in sub-Saharan Africa.

Why is FARMAF needed? What are farm risks?
Investing in any enterprise entails risk but there are arguably more risks involved in farming. Usual farm risks include exposure to climate events such as droughts, floods and hailstorms, which can decimate yields and incomes. Farmers also face difficulties in acquiring farm inputs such as seed, machinery and fertiliser; often the quality of the inputs they buy is variable. When farmers ‘escape’ these risks and obtain a ‘good’ harvest, they are often faced with uncertain access to markets for their produce, high price volatility and huge postharvest losses due to limited access to reliable storage and processing facilities. The result is that farmers can make significant losses even if the harvest is good.

Managing farm risk in Africa
Smallholder farmers in Africa are particularly vulnerable to farm risks because the tools to manage them, which exist in advanced agricultural economies, are largely unavailable to them. FARMAF has been promoting such tools in order to provide farmers with protection against severe negative shocks and to enable them to optimise productivity.
FARMAF TOOLS

The risk management tools promoted under FARMAF include:

- **Agricultural insurance**
 Insurance makes it possible for farmers to be compensated for yield losses occurring as a result of insurable risks including the weather-related risks mentioned previously. Insurance offers financial protection to farmers because it allows them to transfer their risk of income loss to a better-endowed insurer. By so doing, farmers are also enabled to repay loans taken for farming even if they suffer losses as a result of the insured risks. Hence, it has become evident that farmers who benefit from agricultural insurance also have better access to farm credit, sometimes on significantly improved terms.

- **Innovative marketing systems**
 - These systems generally are intended to help farmers overcome marketing challenges and risks. They improve access to remunerative markets, minimise uncertainty in trade transactions, enhance farmers’ bargaining position, and can help in managing price risks. The innovative marketing systems include:
 - **Warehouse Receipt Systems (WRS)**
 Under these systems farmers can deposit storable produce in a designated warehouse and obtain a warehouse receipt – a document specifying that commodities of stated quantity and quality have been deposited at a particular location. The particular stored commodity has to be delivered by the operator of the warehouse whenever the receipt is presented. It can be used to facilitate trading between people who are far apart from each other (geographically) because there is no need to physically check what is being traded before the transaction occurs. The commodity represented by the receipt can also be used as security for a loan, making it possible for producers to delay the sale of their crop beyond the harvest season when prices are usually very low.
 - **Agricultural commodity exchanges**
 Agricultural commodity exchanges offer ‘virtual’ platforms (without the physical produce), where sellers and buyers can trade for delivery immediately or at a stated future date. Exchanges allow for transparent trading where delivery and payment are assured. By also fostering trade for future delivery, they create opportunities for market players to manage price risks.
• **Market Information Systems (MIS)**
 These systems collect, process and disseminate information on prices as well as demand and supply of particular commodities in order to enable farmers, traders and other players to make well-informed marketing decisions.

• **Contracting**
 Smallholder farmers can enter into contracts to produce specified crops under particular conditions and sell the produce to large-scale traders, processors, exporters and nucleus farmers. These buyers usually provide inputs on credit as well as extension services to the participating farmers and deduct the cost directly from proceeds from the sale of produce by farmers. The system improves access to inputs as well as markets (often at fixed future prices). Another variant is where farmers enter into contracts only to sell produce at fixed or guaranteed floor prices in the future. This does not involve any supply of inputs but allows farmers to access production finance as price and marketing uncertainties are removed.

• **Collective action**
 Collective action usually involves promoting the formation of groups among smallholder farmers to enable them to buy inputs in bulk and at lower cost, to obtain farm extension services together, access production credit on competitive terms, and to sell collectively into remunerative markets by aggregating and ensuring compliance with relevant commodity quality standards. This approach tends to be adopted in encouraging uptake of all the tools mentioned above by smallholder farmers.

![Photo: N Palmer/CIAT](image-url)
HOW DOES THE FARMAF APPROACH WORK?

The approach adopted in implementing FARMAF actions recognises that risk management in agriculture is multi-dimensional. The approach incorporates the following features:

- **Building on existing initiatives**
 FARMAF pilots build on existing initiatives and avoid ‘starting from scratch’ which wastes resources through duplication of efforts. The focus is usually on improving and scaling up access to existing tools and/or developing complementary tools.

- **Fostering effective links between tools**
 The approach ensures effective links between risk management tools in order to optimise their benefits, rather than developing each one in isolation. For instance, crop insurance is actively linked to market supply of farm credit and access to inputs as well as farm extension services. A critical link is also made to marketing systems which reduce loan default risk by ensuring farmers can sell their produce through reliable channels and at predictable prices.

- **Capacity building**
 The development of specific tools often leads to new challenges. For this reason, FARMAF actions include capacity building to enable stakeholders to respond in a flexible manner to challenges which may emerge as the tools are developed.

- **Leading role by farmers’ organisations**
 In all cases, the priorities of farmers’ organisations (FOs) define national agendas for FARMAF actions. Though FOs play a leading role, they usually collaborate with governments and other private sector stakeholders in implementing FARMAF actions.

- **Policy advocacy**
 The policy context is one of the biggest challenges for successful development of most risk management tools, especially where policy actions are unpredictable or disrupt inputs and output markets. Therefore farmers, together with other stakeholders, carry out policy advocacy by ensuring that a supportive policy and regulatory framework is created and maintained for the tools and the farm sector in general. This is achieved through generating and sharing required evidence as well as promoting effective advocacy platforms.
LESSONS LEARNT: HIGHLIGHTS

Agricultural insurance

- Two insurance products have been promoted: the traditional indemnity-based crop insurance and novella index-linked agricultural insurance products, which have shown demonstrable potential in Burkina Faso and Zambia whilst the latter product is being piloted in Tanzania.
- In the absence of subsidies, insurance uptake is low unless insurance is bundled with production loans, an experience which is consistent with emerging global evidence.
- Complementing the private insurance markets with public-funded schemes to cushion the impact of insured risks occurring on a catastrophic scale is important in ensuring sustainability.
- An enabling policy and regulatory environment as well as effective sensitisation activities are crucial in driving uptake, especially of index-based insurance products.

Warehouse Receipt Systems (WRS)

- Warrantage – a WRS exclusively targeting farmers storing in small-scale warehouses – has produced significant positive impacts on household food security, household income and the capacity of smallholder farmers to invest in scaling up cash crop production and other non-farm income generating activities. It is evident, however, that opportunities can also be created for smallholder farmers to trade into remunerative formal markets if effective quality assurance systems are developed for the Warrantage schemes. The evidence further shows that participating farmers who take advantage of such opportunities do not compromise household food security.
- To optimise the benefits of WRS of varying scale, it is necessary to promote complementary tools including forward contracting MIS and commodity exchanges as well as creating and maintaining enabling policy environments.

Photo: N Palmer/CIFAT
• The development of WRS and advanced marketing systems can be critically hampered by weaknesses in the regulatory framework.

• FARMAF ICT-based innovations developed under FARMAF have enhanced oversight of certified or licensed warehouse operators – thereby building confidence in the system and scaling up uptake by depositors and financiers.

• Advocacy driven by farmers in collaboration with other stakeholders in agricultural value chains has been valuable in addressing some of the policy obstacles. However, the policy conundrum remains a threat to the sustainability of these systems in most countries.

• Also crucial is sustained capacity building for key stakeholders, including regulators, depositors and financiers.

Market Information Systems (MIS)

• It is possible and beneficial to expand the scope of information provision beyond price dissemination, to include better crop forecasts, more reliable data on available stocks and potential sellers/buyers, as well as facilitation of farm extension delivery.

• If the information is packaged well enough to attract good audience ratings, then commercial sponsorship of dissemination is possible and can make a significant difference in ensuring sustainability of the system.

Collective action

• Collective action has proved effective, for instance, in lowering the cost of inputs acquisition – with farmers obtaining significant discounts (ranging between 10% and 20%) when they buy in bulk.

• Where farmers are sensitised about alternative policy actions – for example through study visits – they are able to partner other actors in effectively lobbying for policy reforms which address their concerns and the risks to which they are exposed.
FARMAF CONSORTIUM
PARTNERS AND CONTACTS

Agrinatura EEIG
secretariat@agrinatura-eu.eu

Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD) - France
Elodie Maître D’Hôtel: elodie.maître@cirad.fr

Natural Resources Institute (NRI) - UK
Gideon Onumah: g.e.onumah@gre.ac.uk

Wageningen University and Research Centre (WUR) - The Netherlands
Marcel van Asseldonk: marcel.vanasseldonk@wur.nl

Pan Africa Farmers Organisation (PAFO)
Kolyang Palebele: cnctr_optchad@yahoo.fr; panaficanfarmers@yahoo.com
Fatma Ben Rejeb, PAFO CEO: ceo@pafo-africa.org

Confédération Paysanne du Faso (CPF) - Burkina Faso
Issoufou Porgo: issoufoporgo@yahoo.fr

Mtandao wa Vikundi vya Wakalimia Tanzania (MVWATA) - Tanzania
Stephen Ruvuga: sruvuga@yahoo.co.uk

Zambia National Farmers’ Union (ZNFU) - Zambia
Coillard Hamusimbi: hamusimbi@znfu.org.zm
Godwin Mumba: mumba@znfu.org.zm

East African Farmers’ Federation (EAFF) - East Africa
Stephen Muchiri: smuchiri@effafrica.org

Plateforme sous-Régionale des Organisations Paysannes d’Afrique Centrale (PROPAC) - Central Africa
Gustave Ewole: eggy.1@yahoo.fr

Réseau des Organisations Paysannes et Professionnelles Agricoles (ROPPA) - West Africa
Ousseini Ouédraogo: couedraogo@yahoo.fr

Southern African Confederation of Agricultural Unions (SACAU)
discontinued their involvement in FARMAF towards the end of 2014 for reasons beyond the project.

Dr Gideon Onumah, FARMAF Project Coordinator
Natural Resources Institute
University of Greenwich
Chatham Maritime, Kent, ME4 4TB, United Kingdom
T: +44 (0)1634 883263 e: farmaf@gre.ac.uk

Edited by: Gillian Summers
Cover photo: N Palmer/CIAT
Art direction: Geoff Denney and Simon Pointer, GDA Design

Disclaimer: the views expressed in this publication do not necessarily reflect the views of the European Union.
Panel B: From germination to the market: transforming risks into opportunities

In this panel, two initiatives transform market risks into opportunities, enabling farmers to access the market and take control over the sale of their produce. The third introduces an innovative hybrid insurance model, to ensure that farmers’ produce is insured from the very early stages all the way to the harvest.

Presentation B.1: Commodity exchange trading in Ethiopia
Tewodros Demeke, ATA

Presentation B.2: Integrated grain value chain lending and insurance
Jean-Michel Voisard, Feed the Future Senegal

Presentation B.3: ACRE Africa’s Replanting Guarantee
Stewart McCulloch, VisionFund International, on behalf of ACRE Africa
Presentation B.1:

Commodity exchange trading in Ethiopia

Tewodros Demeke, ATA

What is an Exchange?

- A neutral trading system that reliably and efficiently connects buyers and sellers and, so that all actors can participate fairly and transparently
- A service to the market: a 3rd party that takes on the risk from both sides of the trade
Commodity exchange is An idea whose time has come

- As Ethiopia is poised to transform its agrarian economy, so too must Ethiopia’s marketing system take the country into the new Agricultural Transformations.
- It is time to enter the modern age of globally connected trading systems, relying on technology and know how, while tailored to Ethiopia’s realities and conditions.
- It is time to forge a new partnership between the private and the public in the new arena created by market liberalization.

Current agricultural market structure in Ethiopia

<table>
<thead>
<tr>
<th>SMALLHOLDER (SS) 95%</th>
<th>STATE FARM (SF)</th>
<th>COMMERCIAL (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RURAL ASSEMBLERS</td>
<td>COOPS</td>
<td>EGTE</td>
</tr>
<tr>
<td>WHOLESALERS (SURPLUS)</td>
<td>EXPORTERS</td>
<td>PROCESSORS</td>
</tr>
<tr>
<td>BROKERS</td>
<td>FOOD AID AGENCIES</td>
<td></td>
</tr>
<tr>
<td>WHOLESALERS (DEFICIT)</td>
<td>FOOD AID AGENCIES</td>
<td></td>
</tr>
<tr>
<td>RETAILERS</td>
<td>FOOD AID AGENCIES</td>
<td></td>
</tr>
<tr>
<td>CONSUMERS: DOMESTIC</td>
<td>FOOD AID AGENCIES</td>
<td></td>
</tr>
</tbody>
</table>
Aims of commodity exchange

- Creating certainty regarding:
 - The quality of the product,
 - The quantity the product and
 - Location of commodities to be traded
- Reduces transaction costs, (in the form of):
 - Cost of sourcing produce for traders and processors
 - The cost of accessing markets for farmers, especially for Premium quality produce
- Improves collection and dissemination of market information systems to all players (Prices on the exchange).
- Developement and strengthening of market infrastructure

Aims continued…

- Develop and strengthen warehouse receipt system,
 - Makes it possible for producers, who so desire, to defer sale during the harvest season, when prices are low and to gain from seasonal price increase
 - Ensures that agricultural produce is stored in well-run facilities, thereby reducing post-harvest losses
 - Allows smallholder farmers to aggregate – sometimes facilitated by inventory finance and sell directly to processors and large traders, rather than through intermediaries
 - Reduce seasonal variability in the supply and prices of agricultural commodities to the benefit of consumers as well as processors
Commodity Exchange will facilitate and increase access of ARM tools through:

- Developing and strengthening organizational structure in the market and its actors,
- Creating and establishing integrity in the market actors, product and transaction,
- Developing transparency in the trading system,
- Developing efficiency in the market,
- Strengthening farmer empowerment and price bargaining power,
- Strengthening awareness and capacities at all levels
- Strengthening market information system and infrastructure.
- Developing and strengthening cooperative, private and government warehouse receipt system,

Evaluating the impacts of commodity exchange on farmers by measuring:

- Incomes of smallholders farmer’s
- Smallholder farmer’s livelihood situations
- Production and productivity of farmers product
- Farmer’s premium for better quality supply
- Market information system and infrastructure
- Access to finance
- Farmers knowledge and capacities
- Farmer’s capacity to utilize inputs
Commodity exchange good practices:
- Creating certainty regarding the quality, quantity and location of commodities to be traded,
- Reduces transaction costs
- Improves collection and dissemination of market information to all players
- Represents a transparent and often reliable means by which lenders can liquidate collateralized commodities
- The WRS developed and act as a delivery mechanism, that helps to underpin exchange trading
- Reduce seasonal variability in the supply and prices of agricultural commodities to the benefit of consumers as well as processors
- Encouraging investment in agro-processing and microfinance institutions.
- Facilitates financing of the agricultural trade and the subsector.

Weaknesses and lessons learned
- Represent only formal grain market in the country
- Limited capacities and trainings for smallholder to enhance the productivity and quality of their products
- Less empowerment of domestic as well as international companies to invest in commodity exchanges trading as per the rules and regulation determined by the government is
- Co-organized with interested groups (including from the private sector), regional and national
- Workshops and conferences on commodity exchange trading issues, or provide support to such events are less.
- Address only limited export commodities like coffee, sesame and beans (white pea beans and red kidney beans).
- Success in managing severe food crises, but at infant stage for stabilising market prices
- Limited in capacity and mitigating mechanisms on export and domestics price
The future is here…

Yes we can!!

Thank you

OCTOBER, 25
Structure with Exchange

SMALLHOLDERS STATE FARM COMMERCIAL (CF)

ASSEMBLERS COOPS EGTE

WHOLESALE (SURPLUS)

COMMODITY EXCHANGE

EXPORTERS WHOLESALE (DEFICIT) PROCESSORS FOOD AID AGENCIES

RETAILERS

CONSUMERS: DOMESTIC

Background

- Smallholder farmers in Ethiopia face challenges like agricultural risks (production risk and market risk)
- The predominance of informal marketing systems in Ethiopia creates uncertainty/risk for both producers and traders

This is because:

- Increase transaction costs
- Lack storage facilities
- Access to trade finance
- Market information center and infrastructure
Presentation B.2:

Integrated grain value chain lending and insurance

Jean-Michel Voisard, Feed the Future Senegal

FEED THE FUTURE SENEGAL NAATAL MBAY
INTERLOCKING CREDIT SYSTEM BASED ON GRAIN COLLATERAL

What is Feed the Future Naatal Mbay?

The Feed the Future Senegal Naatal Mbay Project (“Flourishing Agriculture” in Wolof), funded under the United States Global Food Security Act, supports the Government of Senegal’s objectives to reduce poverty and food insecurity amongst its vulnerable rural populations. Through the Naatal Mbay project, USAID aims to boost the incomes of 130,000 farm households representing 45% of households within the project’s intervention zones by scaling up and expanding successful technologies, skills and approaches for inclusive growth and resilience in key cereal value chains: rice, maize and millet. The implementation strategy is based on facilitation, linkage, partnership and local capacity development to promote sustainable and market-driven systemic changes.

What is an Interlocking credit system?

It is an approach to lending that focuses on securing the value of grain raw material, for example Paddy rice, as a collateral for both small farmer working capital loans and lines of credit that finance raw material procurement by processors such as grain mills.

When and why to use it

The system may be used in the context of a commercial value chain composed of small farmers and cooperatives capable of producing consistent grain surpluses that cover the value of input and other working capital needs. It also requires a competitive processing sector and a local consumer market capable of absorbing the end-product. It also requires a solid bank with a demonstrated interest in taking a leadership role in structuring the value chain. Finally, the system is further reinforced by the presence of crop insurance products that provide coverage against climate risks.

What risks are addressed by this system

The system provides the farmer with a system that enables them to access quality inputs through loans that are secured by a structure demand of well-funded buyers. Transactions are negotiated and settled under the oversight of the banks, who have a stake in ensuring the success of both parties. The result is a stable price, higher than the spot prices, because millers will pay more for the additional benefit of predictable quality and the logistics efficiency of consolidated stocks. Loans are further secured against climate and agronomic risks by being bundled with a crop insurance product. The system creates a coordinated supply chain with significant productivity gains that secures the industry against downward shifts in world prices.

How does it work (see diagram below)?

- At the outset, Production Working Capital loans are made by banks to farmer organizations to finance seed, inputs and land preparation costs. Loans are disbursed by the bank through a voucher system that can be redeemed by authorized input suppliers and service providers. The loans are secured by the commitment by the group to consolidate at a designated warehouse a volume of grain corresponding to the loan value, as well as the purchase of a crop insurance contract to guarantee the bank against climate and pest risks. The volume of grain to be delivered by the farmer as loan reimbursement is calculated based on an indicative price. The price is established at the time of harvest, following a negotiation chaired by the bank and involving the farmer organizations and the rice mills, and reflects current market conditions. Reimbursements are tracked by a team of field stock auditors delegated by the banks that are tasked with verifying the accuracy of the data transmitted to the banks by the warehouse clerks at the consolidation points.
- At harvest, the stockpiles created by the in-kind reimbursements of the production loan are then marketed through **Commercial Lines of Credit** accessed by rice mills that finance the purchase of the consolidated grain from the farmers. As a mill signs contracts with the farmer groups and acquires their grain stocks for processing, the mill’s commercial line of credit is activated and then secured through the transfer of ownership of the grain stocks. The bank then draws from the mill’s line of credit to clear the farmers’ outstanding loans, freeing them to start a new production cycle. These lines of credit are not limited to the grain stocks associated with production loan reimbursements; they also provide cash flow for the mills to purchase residual surpluses from individual farmers and CNs. These subsequent purchases will be priced through spot negotiations.

- As the grain is hauled from the farmers’ storage point to the mill, where it is stored, and then processed into commercial white rice, an on-site agent from a **Collateral Management Firm** mandated by the bank monitors the total volume and value of the un-milled and milled grain that is stored on the premises. These figures are promptly reported to the bank’s account managers, who check them against the outstanding balance of the commercial line of credit. The line of credit is reimbursed as the finished product is sold to wholesalers and payments are received by the miller’s bank, either in cash or through promissory notes.

This system depends on getting banks’ recognition of the collateral value of locally produced paddy rice and locally milled rice, which until then was only allowed for stocks of imported rice stored in bonded warehouses. This requires that the following basic conditions are met: i) the farmers need to respect basic quality standards that will guarantee productivity and marketability of the processed product; ii) the market demand for the end-product needs to be sustained and liquid; and iii) the farmers and millers need to demonstrate a capacity to operate profitably within the productivity and price boundaries set by local and international competition.

These conditions are met by coordinating the introduction of the system with capacity building in best practices and quality control, mechanized harvest and grain consolidation services to reduce logistics costs, transition of mills to more sophisticated and productive equipment, and large consolidated volumes of recognized and branded quality that enable mills to service the demand of urban markets with an uninterrupted supply. All of the above was achieved by complementary Naatal Mbay facilitation actions involving farmer organizations, millers, post-harvest service providers, financial institutions and market promotion.
How to apply it in a development project context

- Identify leading organizations: Farmer cooperatives, Millers and a Bank
- Identify available storage space as consolidation points
- Develop a common set of product norms & standards as well as associated testing protocols. These need to be understood and accepted by all parties. Field trainings of all stakeholders need to be held to ensure full applicability.
- Hold training sessions with all parties, separately and jointly, to define the value chain cost structure from field to fork and identify bottlenecks as well as cost reduction possibilities through proper attributions of tasks and improvement of quality level. These trainings become the basis of price setting negotiations.
- Amendment of farmer and miller contracts to include grain collateral clauses.
- Tri-party in-kind payment price negotiation at harvest time.
- Launch of the first consolidation round at selected warehouses and enforcement of quality standards.
- Development of an inventory tracking tool for the bank and stakeholders to monitor reimbursements and off-take on a continuous basis at all locations.
- Clearance of farmer loans against miller contract purchases funded by mirror line of credit.
- Launch of second cycle.

Key lessons learned and tips for applying the tool

- High investment in development and training of all parties in a simple but efficient product norm and testing protocol.
- Price setting should include a sharing of the benefits of the consolidation process and result in a relatively higher price than current market level.
- IT approaches that support the system should be simple to deploy and allow for incremental complexity. The system should allow for redundancy and cross-checking controls by third party services such as audit firms or inventory monitoring services.
- Banks should see project support in systems as a one-off design support and be ready to absorb oversight costs quickly.
- Data and transparency is key. The system needs the development of a strong self-tracking capacity by both farmer groups and millers.

Results to date

In Senegal, the system now links more than 20,000 rice farmers to 20 rice mills. As of 2017, lending to the rice sector has quadrupled, resulting in the annual procurement of $20 million of rice farmgate, which corresponds to 80,000 tons of paddy rice. Loan default rates have gone down more than 15% and recovery rates now exceed 95%. The reduction in perceived risks has resulted in increased private investments in farm equipment, an improvement of rice milling equipment and capacity.

For more information: (jmvoisard@rti.org / RTI International)
Presentation B.3:

ACRE Africa's Replanting Guarantee

Stewart McCulloch, VisionFund International, on behalf of ACRE Africa

ACRE Africa’s Replanting Guarantee Initiative:
A summary of lessons learnt and challenges encountered

Presented by

During IFAD PARM K-sharing Event on "Agricultural Risk Management: practices and lessons for development

2017
About ACRE Africa

Agriculture and Climate Risk Enterprise (ACRE) Africa is a for-profit social enterprises operating as an insurance intermediary to facilitate agriculture and climate risk solutions for smallholder farmers across Africa. Registered as an insurance surveyor registered in Kenya, an agent in Rwanda and Tanzania and operating as a technical partner in other African countries, ACRE Africa works with insurers and other stakeholders in the agricultural insurance value chain to facilitate access to insurance products by smallholder farmers.

In the past eight years, ACRE Africa has:

- Conducted countrywide feasibility studies in Kenya, Tanzania and Rwanda as well as region/client specific ones
- Customized insurance products reaching a large number of smallholder farmers through increasingly better route and speed to market using a market-led product design approach.
- Developed and monitored successful weather indices for major cereals, food crops and cash crops
- Successfully designed and launched an easily adaptable mobile-based registration, compensation platform with embedded geotag instructions in Kenya and Tanzania.
- Re-introduced in the market an improved indemnity cover that addressed the bottleneck of frivolous claims by introducing a mandatory care calendar for insured cows. This is currently being sold by two local insurance companies.
- Developed training manuals and conducted trainings for farmers, agribusinesses, policy makers and local partners.

ACRE Africa’s Impact

- Cumulatively, by 2016, over 1,000,000 farmers in Kenya, Tanzania and Rwanda insured
- Insured farmers invested 20% more in their farms and earned 16% more than uninsured farmers

Replanting Guarantee

In 2013, ACRE Africa (then Kilimo Salama) carried out a survey that indicated that 49% of smallholder farmers’ suffer production losses arising from germination failures. This survey result gave rise to the innovative Replanting Guarantee Product. In collaboration with partners, ACRE Africa pioneered the market-led, data-driven solution using participatory distribution strategies and risk validation processes to enhance product simplicity, affordability and accessibility by smallholder farmers.

How it works

The Seed Replanting Guarantee (RPG) product is implemented through partnerships with, Seed Co Limited, Safaricom Ltd, Airtel Ltd and UAP Insurance Ltd. The Replanting Guarantee Product (RPG) is delivered through a card bearing instructions and a unique code placed in Duma 43 maize seed packets. The instructions prompt farmers’ to register for insurance using a USSD code on their mobile phones.

Once registered, ACRE Africa monitors the farmer’s location for adverse weather events. An insurance payment is triggered if the weather index indicates a loss of the farmer’s inputs investment. The RPG coverage - valid for 21 days upon registration (germination) - allows the customer to purchase another bag of inputs so as to not miss the entire planting season.

www.acreafrica.com | enquiries@acreafrica.com | +254 719249615
Partners Roles and Responsibilities

Models, Lessons and Challenges
The RPG product has a long history or pilot tests and reviews. In an effort to get the right mix of strategies, ACRE Africa has tested three models:

1. **Use of QR codes for registration** – This model was applied during the testing phase of the RPG concept. At the time, without a solid partnership with the seed companies, Kilimo Salama (now ACRE Africa) generated QR codes and attached them to inputs being sold at the agrodealers’ shops. The Kilimo Salama team then trained agrodealers on how to register the codes and inform the farmers’ of the registration and the benefits of the product.

2. **Use of SMS based registration** – Upon a successful partnership engagement with SeedCo Ltd, Kilimo Salama introduce cards within the bags of seeds. Each card had a unique code with instructions for farmers to send the code in a text message to Kilimo Salama.

3. **Use of USSD code based registration** – This model improved on the SMS based registration system, applying a USSD code to each unique card code. This model is currently being used and has had more successes recorded compared to any other model.

[Diagram of the process]

Partners Roles and Responsibilities

- ACRE Africa
 - Design the cards
 - Design the index and monitor risk using satellite data
 - Host and maintain mobile registration platform
 - Market the product

- Input Company SeedCo Ltd
 - Place the card in the bag of seeds
 - Pay保费 to UAP Insurance Ltd
 - Market the seed insurance bundle

- Insurance Company UAP Insurance
 - Underwrite the risk
 - Support product marketing
 - Make Insurance compensation to farmers

- Mobile Network Provider Airtel/Safaricom

www.acreafrica.com | enquiries@acreafrica.com | +254 719249615
Snap Shot – Lessons, Challenges, Solutions and Opportunities

Lessons
- The QR code system is capital intensive in terms of purchase of smart phones – majority of the agrodealers have feature phones
- Use of QR codes requires intense training each season – agrodealers forgot the process immediately after the season while some misplaced their phones
- SMS based registration system resulted into too many messages to the farmers – farmers were uncomfortable with the frequency of messages
- Farmers are comfortable with simple registration systems – the USSD code
- Replacing alphabetic codes with numeric codes resulted in a 5% increase in uptake
- The USSD code success is built on its mimicry of the airtime purchase process which was introduced during the entry of mobile phones into the market in the 1990’s
- Farmers are able to interpret the messages feedback after registration
- Gender: men buy the inputs (seeds); women do the planting – resulting in majority of the registered farmers being women since registration is done during planting
- There is a need to extend the policy cover beyond the seed germination stage to cover post germination to weeding stage
- There is a need to actively engage the farmers to create trust and relations with the program, improve the compensation and marketing incentive plans

Challenges
- Limited product awareness and product knowledge among the targeted smallholder farmers due to:
 - Limited partner reach – the RPG product is currently distributed using one seed company only (SeedCo has a marketshare of 5% in Kenya)
 - Product awareness drives are too cost intensive compared to the product revenue structure yet the most effective awareness channels require product promoters remuneration, radio campaign fees and incentives for agrodealers
- One of the major market needs is seed authentication which interferes with the purpose of the RPG registration card
 - Some farmers think the card inside is for seed authentication and therefore throw away the card once they see it
- Negative perception about insurance in general
- Agro-dealers are very busy during the planting season and therefore do not provide adequate information on the RPG product and support to farmers to register for the RPG product
- Competing insurance products in the market e.g. the Government subsidized cover confuse the farmers

Way Forward
- Use of low touch interventions like digital messaging that are cost effective and easy to use for product education
- Partnerships with farmers to apply peer-to-peer trainer of trainers methodology for awareness creation and information dissemination
- Engagement of local administration and farmer leaders to have the RPG product integrated in the local social structures to promote a sense of ownership
- Introduction of ACRE Africa’s Top Up Cover to cover the full season risks
Panel C: Using farm practices to manage risks

Farming practices can be used to face risks, by accelerating the regeneration of the soil, by helping farmers protect their ecosystems or enabling them to shift practices to respond to weather changes.

Presentation C.1: Hydroponic grass
Indra Mallo, MAVIM

Presentation C.2: Farming with Indigenous Micro Organisms
Shindhe Shiva Shankar, SARRA

Presentation C.3: Assisted Natural Regeneration
Alice Brié, IFAD
Presentation C.1:

Hydroponic grass

Indra Mallo, MAVIM

AGRICULTURE RISK MANAGEMENT: PRACTICES & LESSONS LEARNT FOR DEVELOPMENT

K SHARING & LEARNING WORKSHOP ROME 25TH OCTOBER 2017

HYDROPONIC & AZOLLA FODDER INITIATIVE
PRESENTED BY
MAVIM
MAHILA AARTHIK VIKAS MAHAMANDAL
GOVT. OF MAHARASHTRA, INDIA

THE PROBLEM

DROUGHT
Period 2012 to 2014
Acute shortages of drinking water; green fodder;
Result - Distress sale of milch animals and rural migration

Threat to Programme implementation of Micro Livelihood Plans (MLP) through rearing of goat, and dairy animals.

Criteria to measure the contribution of initiative to ARM - the retention of the MLP animals and repayment of the micro credit bank loans availed by the women Self Help groups.
THE PROBLEM

DROUGHT
Average rainfall received less than 200mm during three years between 2012 to 2014.
Acute shortages of drinking water; green fodder;
Result - Distress sale of milch animals and rural migration

Threat to Programme implementation of Micro Livelihood Plans (MLP) through rearing of goat, and dairy animals.

The criteria used to measure the contribution of our initiative to the management of this agricultural risk was the retention of the MLP animals and repayment of the micro credit bank loans availed by the women Self Help groups.

HYDROPONIC FODDER
AZOLLA BED PREPARATION

Foundation & Construction of

Installation of culture

Azola Bed

STRENGTHS

• Easy to grow in small spaces – plastic trays and soil bed measuring 2/4ft to 3/6ft
• Affordable investment
• Quick growth – Hydroponic within 8 days; Azolla within 10 to 15 days after initiation, repeat harvest every 3 days
• Lack of substitute of other green fodder
• Fodder rich in micro nutrients for animals, result visible in their improved health and reduced mortality
• Used for other household livestock as well namely poultry
• Reduced the drudgery of collection and gathering of fodder material for the women due to its ease of collection by hand, and it's location next to the animals shed

ECONOMICS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Indicators</th>
<th>Azola</th>
<th>Hydronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Infrastructure cost (per unit per member)</td>
<td>Rs.1000/- (15.36 USD)</td>
<td>Rs.2100/- (32.27 USD)</td>
</tr>
<tr>
<td>2</td>
<td>Human labor (In Hours)</td>
<td>1 Hr per day</td>
<td>1 Hr per day</td>
</tr>
<tr>
<td>3</td>
<td>Drudgery</td>
<td>Minimum</td>
<td>Minimum</td>
</tr>
<tr>
<td>4</td>
<td>Use of the initiative</td>
<td>1) Major use for Goats 2) Used as supplementary food</td>
<td>1) Major use for Dairy, Goats 2) Used as supplementary food</td>
</tr>
<tr>
<td>5</td>
<td>Output</td>
<td>1) The weight of the animal increased by 2 to 3 Kgs 2) Immunity of animal increased 3) Natural glow on animal</td>
<td>1) The fat content in milk increased from 4 to 5.50 2) Immunity of animal increased 3) Milk production increased</td>
</tr>
<tr>
<td>6</td>
<td>Out come</td>
<td>1) The cost of fodder reduced 2) Cheapest supplementary food made available at home 3) Drudgery reduced</td>
<td></td>
</tr>
</tbody>
</table>

WEAKNESSES

Hydroponic -
- Liable to get infected by fungus if not taken out within 7-8 days
- The grown fodder needs to be kept in the sun for at least an hour to reduce the smell before feeding it to the animals
- Regular spray of water every hour during peak summer time.
- Attention to detail necessary to reduce yield loss

Azolla -
- Liable to loss if not taken out on time after full germination in the prepared bed measuring 2/4ft to 3/6ft
- Maintain water level everyday at around 6 inches
- Needs change of pond material - dung/ash/soil/water every three months. Need to maintain proper proportion of material of 2kilos each.
- The pond needs overhead shade in such a manner that the azolla receives morning sun yet is shaded from the strong afternoon sun rays.
LESSONS LEARNT

In times of the drought crisis, people adopted and adapted to a new practice which had quick and visible results

It reduced daily input cost of cattle feed by at least Rs.50 (0.77USD),

It improved the animal's health and in turn improved fat content of milk and so fetched better returns for the farmer.

It is also accepted by different domestic animals such as poultry, cattle, goat, and even fish, raising their immunity to various diseases.

Later, as we scaled up our micro livelihood plan interventions, this fodder initiative became part of the package of practices such that the women farmers could benefit from the beginning itself.

SUCCESS OF AZOLA & HYDROPONIC PLANT CULTIVATION PROJECT

1. I have intervened in the development of processes related to Azola and other hydroponic plant cultivation for needy women of the Self Help Groups which has resulted in the reduction of production cost and increase in their family income.

2. As a result of successful implementation of pilot project, demand for Azola and hydroponic plant cultivation techniques increased in the nearby areas.

3. We are looking forward to replicate this project to the maximum possible extent so that needy women can be
Presentation C.2:

Farming with Indigenous Micro Organisms

Shindhe Shiva Shankar, SARRA
“MOTHER EARTH HAS ENOUGH TO FEED THE NEEDY, BUT NOT FOR THE GREEDY”

-MAHATMA GANDHI

NO CULTURES WITHOUT AGRICULTURE

- SUSTAINABLE FARMING PRACTICES PROTECTS BIO DIVERSITY AND ALSO HELPS TO PRESERVE TRADITIONAL SEEDS FOR THE SECURITY OF THE LOCAL FOOD SYSTEMS.
AGRICULTURAL RISKS FACTORS

➤ ERRATIC RAIN FALL, NEGLECTED RAIN FED FARMING SYSTEMS ----- CLIMATE CHANGE

➤ LOSS OF SOIL FERTILITY ----- EXCESSIVE USE OF CHEMICAL FERTILISERS AND PESTICIDES

➤ DISAPPEARANCE OF TRADITIONAL SEEDS AND PRACTICES ----- MONOCROPPING

AGRICULTURAL RISKS FACTORS

➤ LAND GRABBING AND ILLEGAL MINING ----- DEFORESTATION

➤ DEPLETION OF GROUND WATER RESOURCES ----- OVER EXPLOITATION & NO RECHARGING MECHANISMS

➤ LACK OF VALUE ADDITION AND MARKETING FACILITIES ----- LACK OF INFRASTRUCTURE, STORAGE, PROCESSING AND MARKETING
AGRICULTURAL RISKS FACTORS

- **GENDER BIAS IN FARMING** ----- INFLUENCE OF CULTURE AND CUSTOMS

- **INFLUENCING THE FARMERS WITH SUBSIDIES** ----- TOP DOWN POLICIES AND PRACTICES

- **FARMER FRIENDLY TECHNIQUES AND TOOLS FOR SMALL LAND HOLDING FARMERS FOR WOMEN & MEN** ----- LACK OF COMMUNICATION BETWEEN SCIENTIFIC RESEARCH INSTITUTES AND FARMING COMMUNITY

AGRICULTURAL RISK REMIDIES

- **PROPAGATION OF DROUGHT AND FLOOD RESISTANT TRADITIONAL CROPPING SYSTEMS**

- **APPLICATION OF INDIGENOUS MICRO ORGANISMS (IMOs) AND TRADITIONAL KNOWLEDGE TO ENHANCE THE SOIL FERTILITY**

- **MIXED AND INTER CROPPING OF LOCALLY AVAILABLE SEEDS**
AGRICULTURAL RISK REMIDIES

➢ AFFORESTATION AND STRONG POLICIES BY GOVERNMENT TO PROTECT AND CONSERVE THE FORESTS

➢ INTRODUCING WATER RECHARGING AND HARVESTING STRUCTURES

➢ RESPECT THE FARMERS TRADITIONAL KNOWLEDGE AND PRACTICES AND DOCUMENT FOR THE FUTURE GENERATIONS BENEFITS

AGRICULTURAL RISK REMIDIES

➢ EMPOWERMENT OF FARMERS ORGANISATIONS AND SCIENTIFIC COMMUNITIES NETWORKS

➢ PROMOTE TRADITIONAL SEED BANKS INVOLVING THE WOMEN
IMO’S KNOWLEDGE

- SIMPLE
- PRACTICAL
- ECONOMICAL
- REPLICABLE
- HIGHLY INNOVATIVE AND INDIGENOUS USE OF LOCAL MATERIALS LIKE CHAR COAL, RICE, GINGER, GARLIC, PLANT JUICES, FRUIT JUICES, EGG SHELL, COW BONE, FISH ETC..

Concept of IMOs Technology an over view

IMOs technology

- Environment-friendly
- No artificial heating
- No pollution
- No chemical fertilizer
- No mechanical tillage
- No pesticide
- No herbicide
- No artificial heating
- No pollution
- No chemical fertilizer
- No mechanical tillage
- Environment-friendly
- No pesticide
- No herbicide
POLUTION FREE POULTRY (PFP)

“LAND IS LIFE”
Farming Is A Noble Profession
SARRA (NES-INDIA) WITH HELP OF INTERNATIONAL LAND COALITION PROGRAMME

- IMPLEMENTING THE FAITH GARDEN PROGRAMME IN SEVEN PROVINCES WITH THE TRIBAL COMMUNITIES OF 200 FAMILIES AS A PILOT PROJECT

FOOD ALWAYS IN THE HOME (FAITH) GARDEN

- PLANT VARIOUS FRESH AND NUTRITIOUS VEGETABLES
- ENRICHES TOTALLY DIET WITH Fresh Produce
- USES LIMITED SPACE OF LAND
- USES MOTHERHOOD SERVES THEM BY SAVING THEM FROM FURAL OVERCHARGES
- ENHANCES DAILY DIETARY WITH INCOME GENERATION

South Asia Rural Rehabilitation Association (SARRA)
Bangalore, India
Email: sarraind@gmail.com
FAITH GARDEN

FARMING WITH IMO’S
FARMING WITH IMO’S

FARMING WITH IMO’S
FARMING WITH IMO’S

FARMING WITH IMO’S
FARMING WITH IMO’S

FARMING WITH IMO’S

[Image of a woman farming with IMO’s]
THANK YOU

Rohini Reddy

Mobile: 00-91-99859-47003
E-mail: kodirohini@gmail.com
www.cgnfindia.com
Presentation C.3:

Assisted Natural Regeneration

Alice Brié, IFAD

Implementing Assisted Natural Regeneration: The case of the PASADEM/GEF project in Niger

Assisted natural regeneration is an agro-forestry technique that aims to help small trees to better growth and so to preserve forestry resources, to better exploit field and woods. The purpose is to perverse trees covering and so to reduce risk of drought and land degradation.

The presentation will showcase Niger's experience, through an IFAD funded project, in implementing the Assisted Natural Regeneration technique to improve land restoration and climate change resilience.

The purpose here is not to present this technique as innovative experience to manage risk in agriculture because ANR is a well know practice to management the risk of land degradation. What will be presented is the institutional process and supported measures that went with the implantation of this technique and which allowed communities in the project area to appropriate the method and which enable concrete impact on agro-production, on the environment as well as on food security. To measure the contribution of ANR to actually reduce the risk of land degradation and desertification with try evaluated:

The Impact on the environment

ANR has led to a positive change in the quantity, quality and awareness of the sustainable management of the natural resources of communities in the project area; it has increased the density of trees from 80 to 150 trees per hectare with a soil cover up to 70%. The ecological, economic and financial value of trees has been highlighted on ANR farms. This has reduced the phenomenon of uncontrolled exploitation of wood resources. Intercalary crops which were impossible are nowadays-possible giving hope to the farmers to increase agricultural productivity, the food security and to better manage risk link to increasing desertification and land degradation.

The Impact on population access to technology and productive resources:

Implementation of the ANR technique had immediate effects on the situation of communities. Between 2012 and 2015, ANR was adopted be 60 thousand farmers in more 150 villages and promoted on 90 thousand ha in the project area. The level of adoption of the ANR has increased from 40% in 2012 to 60% in 2015. Communities have appropriated the technique because of its impact on productivity and immediate effects on their environment. In terms of advantage provided, ANR ranked first with 60% of those surveyed and so the project successfully completed the scaling up of the extension of the ANR, through the support of specialized NGOs in association with a Rural Market Group.

The Impact on agro-production:

The ANR technique, with its windbreak action, has allowed seeds to better fix and was responsible of a production increase of 150 kg / ha. The technique has also led to an increase in the density of wood on the plots and land productivity increased by 10%.
The Impact on food security:

Sustainable land management practices, which included ANR, have contributed to the improvement of food production. Gains in cereal production were fairly significant and estimated at 14 thousand tonnes per year. With this increase in cereal production in the area through better land management, the number of people fed in addition was estimated at 60 thousand per year. Including timber sales services through ANR and the guard service of the recovered sites, the number of people fed in addition was more than 119,390 people per year.

ANR provides a range of benefits. ANR is considered to:

- be a cost-efficient way of regenerating forest,
- contribute to strengthening biodiversity,
- provide hunting areas and
- increase carbon sequestration and carbon sinks which contribute to climate change mitigation.

The institutional and economic advantages of the ARN

In order to sustain ANR technique during after the project many other activities such as accompanying measures have been carried out. These activities concern; (i) the financing of "environmentally-friendly income-generating activities" for the exploitation of wood resulting from the practice of ANR; (ii) financing of beekeeping micro project through the training and equipment of ANR adopters; (iii) the financing of micro project of fish; (iv) the establishment of pastoral seed banks and the preparation of management plans for recovered sites for sustainable exploitation of restored pastoral areas.

In addition to those activities, management committee were set up to follow up on the ANR activities and its perpetuation. Those committees were elected in general assembly by the beneficiary populations. All committee members are responsible for monitoring and sustaining the sites regenerated. It is this economic valorisation of the areas recovered and secured that constituted an interesting lever to fight against poverty and rural exodus and that factor of mobilization of populations around good practices of sustainable land management.

Lessons learned

One of the most fundamental aspects that can make the success of ANR is the local community engagement. People's awareness of their impact on the environment and their own ability to reduce land degradation and desertification was made possible in this case because the project also supported the implementation of a sustainable land management platform and implementation of sensitization workshop to enable a common vision sustainable land management. This gave to communities a significant role in ANR especially in Niger where people are the main initiator of land use change.

Management committees gathered in economics interest groups, as well as management plans that they elaborated for the rehabilitated sites were central to the sustainability of the actions and in particular those committed within the framework of ANR

The implementation of this SLM platform has enable effective involvement of administrative and authorities, particularly in awareness-raising activities and knowledge sharing from technical service. This has favoured the scaling up process of ANR.

The success of ANR also link the development of income-generating activities around agricultural products, wood and non-wood forest products that offered opportunities to improve population appropriation by valuing the sites who thus felt involved with the generation of income.
Weaknesses

There is the lack of means of operation of the technical services does not allow public officials to have sufficient resources to provide constant and regular support to the populations. In the short term, their presence is still necessary to maintain the monitoring and control system and the deterrence of certain actors to exploit in anarchic way natural resources. In the medium term, only the establishment of an insurance system guaranteeing the sustainable use of resources will allow technical services to withdraw from monitoring to allow for self-control by the populations.

It has also been observed that, so far, wherever impacts are visible, there is a need to strengthen the technical, institutional and organizational capacities of the local committees so that they can fully play their roles in the management of rehabilitated site.
Panel D: Innovation against climate and biological risks

Designing a hybrid insurance product to cover the most vulnerable stages of plant growth, assessing losses through field pictures taken by farmers, or bringing weather information directly to farmers? Innovation can make a big difference in farmers' lives.

Presentation D.1: Picture-based insurance
Berber Kramer, IFPRI

Presentation D.2: Bima Maono Climate and agro-insurance
Stefan Hirche, KfW and Stewart McCulloch, VisionFund International

Presentation D.3: Agro-met tools
Ana Heureux, FAO
Presentation D.1:

Picture-based insurance

Berber Kramer, IFPRI

Motivation

- **Challenges to scaling up crop insurance:**
 - Traditional indemnity-based insurance: high transaction costs, moral hazard.
 - Index-based insurance: low demand due to basis risk, lack of trust, and poor ownership.

- **PhenoCam solution:** Near-surface remote sensing (through digital repeat photography) to estimate productivity

 - **Picture-based insurance:** Stream of smartphone pictures, from sowing to harvest, to help improve yield loss estimates
Capturing repeat pictures...

Why PBI?

- Improved demand compared with index-based insurance
 - Reduced basis risk
 - Improved tangibility and engagement

- Improved supply compared with indemnity-based insurance
 - Low-cost and timely loss verification
 - Limiting information asymmetries
Formative evaluation in northwest India

50 villages (750 farmers) received insurance in return for regularly uploading pictures of insured plots.

Is this approach feasible?

Are farmers willing & able to provide such camera data?

80% of farmers uploaded at least one valid picture during the cropping season; of them, more than 83% took one picture per month.
Does PBI reduce basis risk?
Performance of weather index-based component

CCEs Yield (Quintals per acre)

No payout

19.84

Does PBI reduce basis risk?
Performance of picture-based insurance component

Agronomers say: 0-20% damage
Actual yields:

20 quintals/acre
PICTURE-BASED LOSS ASSESSMENT INCREASES DEMAND

<table>
<thead>
<tr>
<th>Willingness to pay on average (Rs.)</th>
<th>No adverse selection</th>
<th>No moral hazard</th>
</tr>
</thead>
</table>

Work in Progress

- Development of algorithms that can **automate claims settlement**
 - The more data, the better

- **Economic dynamics**: Demand, adverse selection, moral hazard over time
 - Informative also for initiatives using high-resolution satellite imagery

- **Bundling with agro-advisory services**: discounts for ‘good’ practices
 - Improves data availability, and can help minimize moral hazard

- We are looking for partnerships and growth in this initiative.
THANK YOU

Collaborators

• Francisco Ceballos, Matthew Krupoff (IFPRI) and Miguel Robles (World Bank)
• Michael Mann (the George Washington University)
• Koen Hufkens (Ghent University) and Eli Melaas (Boston University)
• Borlaug Institute for South Asia and HDFC Ergo General Insurance, Ltd. (India)

Funding

• International Initiative for Impact Evaluation
• CGIAR Research Program on Policies, Institutions, and Markets
• IFPRI

Funding
Presentation D.2:

Bima Maono Climate and agro-insurance
Stefan Hirche, KfW and Stewart McCulloch, VisionFund International

Transforming African agriculture through insurance

BIMA MAONO – Climate Insurance, microfinance and agricultural development come together to form a holistic support system for powerful agricultural impacts and outcomes:

- **Enhance** the resilience of small farmers through climate insurance
- **Enable** their graduation from poverty by reducing the risk of investments to confidently develop their farms
- **Expand** financial inclusion by encouraging MFIs to increase agricultural lending to small farmers by enhancing their credit worthiness
- **Ensure** business continuity of farmers and MFIs through major natural disasters with recovery lending programs

Facilitating significant increases in agricultural investment and productivity:

- **Up to 250,000** smallholder farms insured
- **With over 340,000** climate insurance policies each year
- **With up to 1.5m beneficiaries**
- **In 7 African countries by 2021**
BIMA MAONO
Taking insurance innovation the very last mile

VFI’s insurance vision: providing new tools for the poor to enhance their development, recovery and resilience; particularly to cater for the needs of small farmers and women

Day to day events people and communities are resilient to

Credit products:
1. Secure Savings
2. Small loans

The larger events that people tend to worry about

Insurance products:
3. Enhanced credit life
4. Crop
5. Livestock
6. “Economic Assets”

Events such as natural disasters

7. Recovery lending

A’RDIS: Disaster liquidity and catastrophe coverage

Integration of Farming, Finance and Insurance

VisionFund provide the finance and insurance agency
ACRE/UAP provide the insurance and Agronomist visits

Preparation

Weather index

GMPCI

Planting

Farmer Training and budgeting

Premium & data

Planting Window

Germination visit

Incident visit

Crop cut visit

Harvest

Net settlement

GAFCO support the farming process

GREAT AFRICAN FOOD COMPANY

VISIONFUND INTERNATIONAL | WORLD VISION | 3

VISIONFUND INTERNATIONAL | WORLD VISION | 4
Crop insurance integrated in farmer economics

Farmers understand costs and expenses well as it is key to their success in traditional farming. The farmer budgets clarify the investment decision, demonstrating how the insurance addresses their fear of not being able to recoup the cost of production when a disaster strikes and yields collapse.

<table>
<thead>
<tr>
<th>Per Acre</th>
<th>Total (USD)</th>
<th>Loan</th>
<th>Self funded</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Revenue</td>
<td>168</td>
<td>Expected revenue = 5 bags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labour</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertiliser</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spray</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>12</td>
<td>~10% of insured value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>60</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Break even revenue = Insurance value</td>
<td>128</td>
<td>Insurable value = 3 bags = 3/5 = 60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected profit to farmer</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Whilst insurance is 20% of the loan value it is <10% of the insurable value
- The insurable value represents the true economic investment and breakeven
- This budgeting rightly brings insurance along side the costs of other inputs

A²RDIS: African & Asian Resilience in Disasters Insurance Scheme

ARDIS enables recovery lending, by providing:

- Climate, geographical & agricultural information to support business planning and continuity
- Operational & capacity building support for recovery lending
- "Insurance" payouts to MFIs to restore the balance sheet and cover immediate costs
- Assured liquidity to fund recovery lending

Initial portfolio: Kenya, Uganda, Zambia, Malawi, Mali, Myanmar, Cambodia
Under the G7 InsuResilience Initiative, the German Federal Ministry for Economic Cooperation and Development (BMZ) supports insurance initiatives that contribute to protecting against climate risks an additional 400 million poor and vulnerable people in developing countries by 2020.

Among other InsuResilience activities on behalf of BMZ, KfW established the public-private InsuResilience Investment Fund that supports VisionFund’s holistic approach on three levels:

- **BIMA MAONO**: refinancing of insured agro loan portfolios
- **A²RDIS**: Liquidity: contingent credit
- **A²RDIS**: Insurance: lead investor in Global Parametrics
Presentation D.3:

Agro-met tools

Ana Heureux, FAO
INFORMATION REQUIRED

Meteorological data
- Historical climate data (temperature, rainfall etc.)
- Weather forecasts

Agricultural data
- Local crop calendars
- Past crop yields
- Phenological information

2 EXAMPLES OF AGROMET CAPACITY BUILDING AT FAO

- Macedonia agrometeorological information services
- Senegal/Rwanda agro-met digital services
1.) MACEDONIA AUTOMATIC WEATHER STATIONS AND AGRO-MET SERVICES

- Increasing network of weather stations in the country
- Encouraging information sharing with new web services
- Hosting study tour to build capacity of Macedonian experts in agro-met alerts/bulletins

INCORPORATING AGROLOGICAL DATA WITH METEROLOGICAL DATA
PLANT DISEASE RISK WARNING

- Plant disease risk warning
- Real-time agrometeorological monitoring from weather stations
- Disease model by plant pathologist
- Weather forecast
- Combined with satellite observation
- Macedonia, Georgia, Tajikistan
- National Hydrometeorological Service

REMOTE SENSING INDICATORS

- NDVI
- NDWI
- LST
- Other indicators
2.) DIGITAL AGRO-MET APPLICATION IN SENGAL/RWANDA

- Presenting agricultural and meteorological data together via digital services (SMS or app)
- Making information accessible with interactive input from farmers on in these two pilot countries
- Provide as much information as possible to ensure farmers can make informed decisions at each stage in the planting process
- Validate recommendations with farmer feedback

FEEDBACK MECHANISM

Farmers to collect and send back information (e.g. photo, numbers, etc) on the app:

- Today's weather – sunny, cloudy, did it rain?
- Agronomic, phenological information
 - Planting date, failure and replanting
 - How crop is growing, by reporting key stage of crop growth date, or by taking photos
 - Management dates (irrigation, pesticide, fertilizer, etc)
 - Harvest date
- Farmers can ask questions
- Feature to track the actual use of the app to enable monitoring and evaluation
CRITERIA USED TO MEASUREMENT MANagements OF AGRICULTURAL RISK

- Successful integration of agricultural and meteorological information in the form of bulletins or alerts
- Number of farmers or people who access information (either via website or mobile phone)
- Number of informed decisions made as a result of increased information
- Validation of information from farmers/national experts

LESSONS LEARNED

- To collect relevant historical data, a working group across meteorological, agricultural and academic institutions should be the first step to understand local requirements
- Understanding local context and needs and making sure activity is country driven is first priority
- The format of available data can be an issue in developing countries (i.e. word/PDF), need to make output attractive to country
- Investment in training in capacity building in new technologies after implementation is key to make sure project is sustainable
- Involve users in the development of applicaitons
Panel E: Accessing information to manage risks

This group brought together initiatives that aim to bridging the information gap between information providers and farmers. Through mobile applications, these initiatives aim at bringing information directly to farmers, about best practices for animal and plant health or through a holistic approach.

Presentation E.1: Digital inclusion
Henry Burgsteden, FAO

Presentation E.2: EMPRES-i/EMA-i
Julio Pinto, FAO

Presentation E.3: Plantwise
Joseph Mulema, CABI
Presentation E.1:

Digital inclusion

Henry Burgsteden, FAO

Agricultural Services and Digital Inclusion in Africa

PARM K-sharing event - 25 October 2017

4 Apps in 2 Countries, Rwanda and Senegal

“Cure and Feed your livestock”
An application providing real time information on animal diseases control and animal feeding strategies.

“e-Nutrifood”
An application combining information on production, conservation and consumption of nutritious foods.

“Weather and Crop calendar”
An application combining information on weather forecasts, crop calendars and alert systems.

“AgriMarketplace”
An application to connect producers, traders and consumers to facilitate trade and access to inputs.
Device Agnostic Interaction Design

- a.o. Voice (IVR) and Text (SMS / USSD). For smartphones and feature phones
- Profiling through Cooperatives, Media, Farmer Field Schools and Dimitra Clubs
- Human-centered design for mobile agriculture
- Interoperable data services (web services/API)

Cure and Feed your livestock

An application providing real time information on animal diseases control and animal feeding strategies.

- Key messages and workflows (information and alerts)
- Vaccination calendar
- List of local veterinarians
- Waterpoints
- Pasture maps
- Farmer feedback on information and advise
eNutrifood

An application combining information on production, conservation and consumption of nutritious foods.

- Key messages for milk and wheat production chain
- Information and advise on harvesting, cleaning, handling and storage
- Farmer feedback on key messages

Weather and Crop Calendar

An application combining information on weather forecasts, crop calendars and alert systems.

- Weather forecasts (daily, weekly, monthly, seasonal)
- Temperature forecasts
- Agro meteorological information
- Crop Calendar
- Farmer feedback on weather and crop calendar
AgriMarketplace

An application to connect producers, traders and consumers to facilitate trade and access to inputs.

- Interoperable data services for market price information of local markets
- Available at National government through FAO GIEWS pricetool (early warning)
- Farmer feedback on prices

Design Principles

mAgrid Design Toolkit

User-centered design for mobile agriculture

Principles for Digital Development

1. Design with the User
2. Understand the Existing Ecosystem
3. Design for Scale
4. Build for Sustainability
5. Be Data Driven
6. Use Open Standards, Open Data, Open Source, and Open Innovation
7. Reuse and Improve
8. Address Privacy & Security
9. Be Collaborative

Digital Services Development

The Agile Development Team
3 Developers from Rwanda and 3 Developers from Senegal
Oversight/Facilitating ICT chamber (Rwanda) CTIC (Senegal)
Data engineer, Front End dev and UX Designer in Rome
National Consultants in Rwanda and Senegal

Delivery mechanisms
1) Direct Text and Voice message (push)
2) Interactive “tagged” FAQ messages profiling/workflow (pull)
3) Multiplier Smartphone App
Project Milestones

<table>
<thead>
<tr>
<th>Project Milestones</th>
<th>Status</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developers on board at FAO</td>
<td>Done</td>
<td>15th of July</td>
</tr>
<tr>
<td>Local developers in Senegal and Rwanda on board</td>
<td>Done</td>
<td>15th of July</td>
</tr>
<tr>
<td>Workshop in Rome with all developers</td>
<td>Done</td>
<td>30th of July – 4th of August</td>
</tr>
<tr>
<td>Prototypes of the apps developed</td>
<td>Done</td>
<td>Aug-Oct 2017</td>
</tr>
<tr>
<td>Apps testing and adaptation</td>
<td>Doing with developers and farmers</td>
<td>Nov-Dec 2017</td>
</tr>
<tr>
<td>Workshop with farmers and field workers in the countries</td>
<td>Organized by local strategic partners CTIC and ICT chamber</td>
<td>Nov 2017</td>
</tr>
<tr>
<td>Competition organization</td>
<td>Organized by local strategic partners CTIC and ICT chamber</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>Closing event and competition award ceremony</td>
<td>Organized by local strategic partners CTIC and ICT chamber and FAO country offices</td>
<td>Dec 2017</td>
</tr>
<tr>
<td>Monitoring, Evaluation and upscaling and Engagement</td>
<td>Strategic partnerships with WMO, UNIDO, Senegal and Rwanda in place</td>
<td>Dec 2018</td>
</tr>
</tbody>
</table>
Presentation E.2:

EMPRES-i/EMA-i

Julio Pinto, FAO

Event Mobile Application (EMA-i)

A field reporting digital tool to enhance national disease surveillance systems to support Agricultural Risk Management

Julio Pinto, Fairoz Larfaoui, Elisa Palamara, Sabina Ramazzotto
FAO GLEWS

Agricultural Risk Management practices and lessons learned for development
25 October 2017, IFAD HQ, Rome, Italy

Background – EMPRES-i

Global Animal Disease Information System

- EMPRES-i was first released by FAO in 2004.
- A global web-based application to support agricultural risk management through early warning, response to disease threats
- Password-protected with individual privileges
EMA-i and EMPRES-i

Why an app for disease reporting?

- Enhance communication in real-time
- Information transmitted from local to central level
- Improve communication between actors (veterinary services, animal health workers, laboratory experts)
- Effective and early response to disease threats
- Feedback on guidance, advice, services, access to veterinary drugs to support disease management
- Cost/effective compared to traditional systems
- Easy to maintain and sustain in the long term with limited resources in developing countries
Event Mobile Application (EMA-i)

- To **collect** livestock disease data from the field
- To report in **real-time** livestock disease data
- To **safely store** epidemiological data in one database – EMPRES-i platform
- To **access** reported outbreaks’ from a map (“Event Near me”)
- To **analyse/visualize** the reported data in charts (“Report Analysis”)
EMA-i – data collection:

- Data can be collected with or without internet connection
- Data from an event can be collected in different moments
- Drafts are saved and stored in the up and can be easily access at the user convenience
EMA-i – data reporting:

- Data are sent with internet connection

EMA-i workflow

- e-mail notifications
- Periodical reports

EMA-i in EMPRES-i interface

- Disease Event validation process
- Disease Event acceptance process
- Disease Event data transmission from the field

EMA-i app/android

- e-mail notifications to inform:
 - Veterinarian/para-veterinarians in the field
 - Management team
 - Decision makers
Methodology - EMA-i at country level

• **STEP 1 - Preparatory phase: adapting EMA-i to the national animal disease surveillance system**
 - Assessment of existing national surveillance and reporting system
 - Agreement on data property (FAO and National authorities)
 - Personnalisation of EMA-i (Actors involved)
 - Procurement (smartphones, internet...)
 - Training programme

• **STEP 2 - Customisation & start-up of EMA-i:**
 - Customisation of EMA-i
 - Training
 - EMA-i/EMPRES-i tested at country level
 - Standard Operational Procedures (SOPs)

• **STEP 3 – Monitoring & Evaluation**
 - Strengths and weaknesses of EMA-i

• **STEP 4 – Improvement of EMA-i**

EMA-i: implementation in Uganda (2013-2016)

1) **Phase 1: First implementation (January 2013 – July 2014)**
 a. Preparation and customization: January 2013 - July 2013
 b. Implementation – 10/112 districts (15 users)
 c. First evaluation: July 2013 – July 2014

2) **Phase 2: Second implementation (July 2014 - December 2015)**
 - Expansion within the 10 districts
 - More users (33 users)

3) **Phase 3: Third implementation (January 2016 -> onward)**
 - Geographical expansion to Karamoja Region
 (additional 7 districts)
 - More users & more districts
EMA-i: Phase 1 (July 2013 – July 2014)

Geographical coverage: 10/112 districts: Nakasongola, Mbale, Rakai, Sironko, Busia, Lyantonde, Isingiro, Masaka, Mukono, Mityana, Kibale

EMA-i users: CVO, NADDEC (n=5), District Veterinary Officers (n=10)

Customization - animal diseases collected: 14 diseases

Accepted/Validated events are immediately made available in Event Mobile Application (EMA-i) for consultation in the field.

EMA-i interface in EMPRES-i

Disease Event validation process

MAAIV/NADDEC

Disease Event acceptance process

MAAIV/NADDEC

EMA-i app/android

Disease Event data transmission from the field

DVO1

Immediate notification e-mail

All EMA-i users

At each step e-mail are automatically generated to inform the originator of the reported disease event and the individuals responsible for the next action on the status of the specific event.

Phase 1: Results

"From July 2013 to December 2013, 126 livestock reports were submitted to NADDEC compared to 45 in 2012 and 56 in 2011."
EMA-i: Phase 2 (July 2014 – December 2015)

Geographical coverage: 10/112 districts:
Nakasongola, Mbale, Rakai, Sironko, Busia, Lyantonde, Isingiro, Masaka, Mukono, Kibale

EMA-i users: CVO, NADDEC (n=5), District Veterinary Officers 1 (n=10), DVO 2 (n=15–18), Guest (n=6)

- Periodical report list (Decision makers): 11 persons

EMA-i: Phase 3: Expansion (December 2015 – onward)

Geographical coverage: 17/112 districts: Nakasongola, Mbale, Rakai, Sironko, Busia, Lyantonde, Isingiro, Masaka, Mukono, Kibale + Kaibong, Kotido, Abin, Moroto, Napak, Amudat, Nakapiripirit (Karamoja)

EMA-i users: CVO, NADDEC (n=32, acceptance (n=8), validation (n=24), District Veterinary Officers 1 (n=23), DVO 2 (n=110), Guests (n=6)
Uganda: Overall results since July 2013

- EMA-i active users: 162 Animal Health Officers
 - 110 DVO 2
 - 20 DVO 1
 - 32 from the Management Group (NADDEC):
 - 18 Verification
 - 20 Validation

- 1,158 disease events reported/sent with EMA-i!

EMA-i Mali

- Period of implementation: November 2016-April 2017
- 3/11 districts: Koulikoro, Kayes et Sikasso
- Number of users: 25 (districts) + 10 (Management)
EMA-i Tanzania (Zanzibar)

- Period of implementation: June 2016 – February 2017 (on-going)
- All the Island (11 districts)
- Number of users: 35 veterinarians/paraveterinarians

EMA-i - flexible tool

- EMA-i in EMPRES-i interface
 - Disease Event validation process
 - Disease Event acceptance process
- EMA-i app/android
 - Disease data verification & transmission from the field (DVO1)
 - Data transmission from the field (DVO2)
- Periodical reports
 - e-mail notifications
 - to inform: Veterinarian in the field, Management team, Decision makers
- e-mail notifications
 - to inform: Veterinarian in the field, Management team, Decision makers
EMA-i in practice

- East Africa:
 - Uganda: started in 2013 and currently implemented in 21 districts.
 - Tanzania: started in Zanzibar in 2016 and mainland in 2017

- West Africa:
 - Mali: started in 2016 and currently implemented
 - Ghana: under preparation
 - Cote D’Ivoire: plan for 2018

- Southern Africa:
 - Zimbabwe: plan for 2018
 - Lesotho: plan for 2018

Future Plans for EMA-i

- Interoperability with Laboratory Information Systems

- Customization and expansion to collection of livestock production, indicators and prices

- Interoperability with Regional Systems, National Databases (ARIS, EIDSS)

- GOOGLE TOOLS for visualization and risk modeling from disease data available in EMPRES-i
Thank you!

contact:
Julio Pinto (FAO - GLEWS): julio.pinto@fao.org
Fairouz Larfaoui (FAO – GLEWS): fairouz.larfaoui@fao.org
Sabina Ramazzotto (FAO-GLEWS/CIO): sabina.ramazzotto@fao.org
Elisa Palamara (FAO-GLEWS): elisa.palamara@fao.org

Links:
empres-i@fao.org
http://empres-i.fao.org/empresi3g
http://empres-i.fao.org
Presentation E.3:

Plantwise

Joseph Mulema, CABI

The Plantwise Initiative

JOSEPH MK MULEMA (PhD)
Plantwise Regional Support Manager, Africa

KNOWLEDGE FOR LIFE

THEMES (R&D)

Knowledge business
Publishing
Knowledge Management
Invasive species
Trade & Commodities
Development, Communication & Extension (DCE)
Microbial & Molecular Services
International Development

Knowledge Management
Put know-how into people's hands by creating, managing, curating and disseminating information

Invasive Species
Combat threats to livelihoods, agriculture and the environment by controlling pests and diseases

Trade & Commodities
Help farmers to trade more and improve food security with climate smart good agricultural practices

DCE
Bring science from the lab to the field to increase farmer's capacity to grow better quality crops

KNOWLEDGE FOR LIFE

CABI

Platform for Agricultural Risk Management | ARM Practices and lessons learned for development | K-Sharing and Learning Workshop

Volume II | Presentations | 25 October 2017

101/149
Countries of operation

34 countries

The Americas
- Barbados
- Bolivia
- Brazil
- Costa Rica
- Grenada
- Honduras

Nicaragua
Peru
Trinidad & Tobago

Africa
- Burkina Faso
- DR Congo
- Ethiopia
- Ghana
- Kenya
- Malawi

Mozambique
Rwanda
Sierra Leone
Tanzania
Uganda
Zambia

Asia
- Afghanistan
- Bangladesh
- Cambodia
- China
- India
- Nepal
- Pakistan
- Sri Lanka
- Thailand
- Vietnam

Plantwise

A global programme led by CABI to improve farmers’ access to practical knowledge at local level and help them increase food security and food safety

*Plantwise strengthens plant health systems in countries using **PLANT CLINICS** as an entry point*

Components

- Plant Health Systems Development
 - Plant clinics
- Plantwise Knowledge Bank
- Monitoring and evaluation
Although Plant clinics...

are primarily an extension method

They also enable community based surveillance
Factsheet Library app
- Available both in Android and iOS
- Anyone with a smartphone can download factsheets of relevance to their country
- Content can be accessed offline whenever there is no internet connection

Data collection app
- Available on Android tablets or phones and on any laptop
- Allows offline digitisation of plant clinic data with data downloaded once internet connection made
- Delivers SMS recommendation to farmer’s phone

Plantwise Online Management System

Educational apps
- Plant Doctor Simulator (Android) is designed to improve extension workers’ ability to diagnose key pests
- A second simulator is being developed to improve extension workers’ ability to recommend suitable solutions to farmers

Communication apps
- Not directly developed or supported by Plantwise
- Plant doctors regularly use WhatsApp, Telegram and Facebook to communicate with one another
- The self-help communities that grow usually include diagnostic experts or plant doctors with access to the Knowledge Bank
Plantwise key outputs

- 1,800 plant clinics established
- 5,000 plant doctors trained
- 4.5 million farmers reached

Plantwise outcomes and Impact

- 79% of farmers reported yield increases after visiting a plant clinic
- Over half of plant clinic prescriptions recommend non-chemical inputs
- 70% of farmers reported their income increased after visiting a plant clinic
- 25% of Plantwise plant doctors worldwide are female

All Plantwise countries contribute funds and/or staff time towards activities

Plantwise has linked with 70 private sector organisations
Joseph Mulema, CABI
j.mulema@cabi.org
Panel F: From insurance to social protection

In this panel, presenters provided feedback on index-insurance and how it can be used to help farmers manage risks, and how it can be linked to social protection.

Presentation F.1: CADENA (a Programme of the Mexican Government)
Niclas Benni, FAO

Presentation F.2: Agricultural Index Insurance: Feed the Future Innovation Lab for Assets & Market Access
Jennifer Cissé, USAID

Presentation F.3: Weather Risk Management Facility
Francesco Rispoli, IFAD/WFP
Presentation F.1:

CADENA (a Programme of the Mexican Government)

Niclas Benni, FAO

Climate risk management in Mexico’s agricultural sector

The Case of CADENA

Speaker: Niclas Benni
(Rural Finance Team– FAO/ESP)

CADENA: « Component for the Attention to Natural Disasters »

- Public programme from the Mexican federal government that aims at providing basic agricultural insurance coverage against disasters to smallholders;
- Launched in 2003 by the Secretariat for Agriculture, Livestock and Rural Development (SAGARPA);
- Unique combination of elements that allowed CADENA to be extremely (and rapidly) effective at extending coverage throughout the 31 federated States of Mexico;
- CADENA managed to overcome a number of intrinsic challenges that usually make these kind of national insurance programmes unsustainable.
Why was CADENA developed?

- In the period 1999-2012, 80% of the total economic losses from natural disasters were concentrated in the agricultural sector.
- The government set the creation of a disaster insurance scheme for smallholders as a national priority.
- High polarization of the agricultural sector: 0.7% of farmers own more than 100 hectares of arable land, covering 29.3% of the whole. On the other side, 48% of farmers own less than 2 hectares each.
- CADENA focused mainly on providing parametric insurance products (e.g. index-based weather insurance, NOVAdense livestock insurance) enabling coverage of dispersed populations in large geographic areas.

Two main components in the CADENA Programme

1) Agricultural Insurance Against Catastrophes (CADENA-SAC)

Provision of parametric and traditional insurance products against natural disasters, with subsidies from the federal government.

Ultimate beneficiaries: smallholders with less than 20 hectares of annual crops, or less than 60 livestock units;

2) Direct Support to Smallholder Farmers (Apoyo Directo)

Post-catastrophe compensation payments to farmers when agri-insurance is not a feasible option.
CADENA’s structure:

Agricultural Insurance Against Catastrophes (CADENA-SAC)

- **Federal Government**
 - Subsidizes 75-90% of the premium*
 - Buys insurance bundle from:
 - Public-private market
 - Public insurance company (AGROASEMEX)
 - OR
 - 3 Private insurance companies

- **Federated State (insured)**
 - Divides the reimbursement among smallholders
 - Various insurance tools to cover crops/livestock/regions

- **Smallholder in the insured areas/regions**

Highest subsidies reserved to most vulnerable States

CADENA’s Results

- **In 2013:**
 - 12 million hectares were covered under CADENA in 31 States
 - i.e. 65% of the total production area in the country
 - The budget for CADENA had risen from US$ 6 million in 2003 to US$ 292 million in 2013
 - 80% of the federal budget was dedicated to the SAC Insurance component
CADENA’s Results (2)

Number and share of total municipalities covered under a component of CADENA

Source: SAGARPA

In 2013:

- 98% of municipalities had become beneficiaries of the Program
- Which translates into yearly coverage for 3.7 million smallholders
- i.e. 82% of the target population of the Programme

Key facts

1) CADENA as an insurance programme used as an implementation tool for a social safety net for smallholders;

2) High diversification of risks and extension of coverage even to the most vulnerable and exposed federated States. Easier to manage and predict the evolution of federal and stateal budgets;
Public-private participation to the market for agri-insurance against disasters (share of the total insured area)

3) CADENA as a catalyst for the development of a private market for disaster insurance for smallholders: «paving the way» through public example.

For more information, visit the Rural Finance and Investment Learning Centre (RFILC) at http://www.ruralfinanceandinvestment.org/fr/about
Many thanks

Speaker: Niclas Benni (Rural Finance Consultant, FAO/ESP)

Contact: niclas.benni@fao.org

CADENA’s Challenges

- **Sustainability**: the CADENA budget has increased exponentially recently (303 US$ million in 2015), with a forecast of a 26% required increase in the near future.

- **Competition**: the presence of a non-profit public insurance company (AGROASEMEX) has proven to be a destabilizing factor for competition in the market.
CADENA’s components:

2) Direct Support to smallholders (*Apoyo Directo*)

- This component is accessible to those federated States that are unable/unwilling to buy an insurance bundle for specific regions/territories under their jurisdiction.

- The federated State itself, in cooperation with the local SAGARPA delegation (i.e. the Ministry of Agriculture), is responsible for declaring a natural event as «catastrophic».

- The Federal government subsidizes 60% of the direct payments to smallholders.

- Ce composant représente seulement un 20% du budget total de CADENA.
The creation of a public-private insurance market for smallholders

A federated state can choose to buy insurance coverage from:

AGROASEMEX:
A public insurance company

OR

3 private competing companies

Public-private participation to the market for agri-insurance against disasters (share of the total insured area)
Presentation F.2:

Agricultural Index Insurance: Feed the Future Innovation Lab for Assets & Market Access

Jennifer Cissé, USAID

Agricultural Index Insurance: FtF Innovation Lab for Assets & Market Access (AMA IL)

K-Sharing & Learning Workshop
25th October 2017
IFAD HQ, Rome, Italy

Adapted from presentation by Tara Steinmetz and Andrew Mude

AMA Innovation Lab Research

Countries of Research: Bangladesh, Burkina Faso, Dominican Republic, Ecuador, Ethiopia, India, Kenya, Mali, Mozambique, Nepal, Peru, Tanzania.
So What is Index Insurance?

- What is being insured is not the consequences of the weather events (lost yields, for example), but some external measure highly correlated with yields (the index).
- Index should be objectively and easily quantifiable, publicly verifiable, and not possibly manipulated by either the insurer or the insured.
- Payouts are based on predicted losses without individual loss verification.
- Reduces the cost of insurance and speeds up payouts.

Index Insurance Doesn’t Cover All Risk

The goal is to minimize areas A & B, and to maximize area C. It’s important to know both the potential — and the limitations — of index insurance.
AFTER THE DROUGHT

- Index-Based Livestock Insurance paid out after the 2011 drought.
- On average, 36% reduction in sales of remaining livestock & 25% decrease in meal reduction.
- For relatively richer households, insurance led to a 70% drop in asset sales. For relatively poorer households, who tend to reduce meals to cope, insurance led to a 62% reduction in this costly strategy.
- More cost effective than traditional safety nets

BEFORE THE DROUGHT

- Impacts before drought strikes might have the most direct relevance to market strengthening.
- Insured cotton farmers in Mali increased cultivated area by 55%, use of loans by 3%, & use of productive inputs by >50%.
- For cotton farmers in Burkina Faso, being insured allowed them to invest more in other high-value crops compared to their uninsured peers (in this case, sesame).
So You’re Thinking About Index Insurance?

Components of a Successful Index Insurance Venture

1. Why to consider index insurance for agriculture
2. How to assess if index insurance is a good fit
3. The importance of identifying a feasible high-quality index
4. New innovations in contract design that increase value to farmers
5. What institutional structures have to be assessed
6. The challenges & opportunities for marketing and distribution
7. Ongoing challenges facing the successful scaling of index insurance

THE “VISA” MODEL

Village Insurance-Savings Accounts

The VISA Model
BUNDLING INSURANCE

- Interlinked credit and insurance may enable farmers to make investments and increase the credit supply.
- Bundling with inputs or other high-value interventions may increase uptake.
- Bundling with shock-tolerant seeds (e.g. CIMMYT’s Drought Tolerant Maize for Africa) may reduce the cost of insurance and better cover the risk portfolio.

SMART(ER) SUBSIDIES

- Subsidies could be applied to provide coverage for the most catastrophic events.
- Farmers have the option to top-up insurance to cover less catastrophic risk layers.
- Will lower overall cost of insurance for farmers and create a minimum market size for insurance companies.
- May also increase farmer trust in insurance b/c government is putting their money there.
- Or, perhaps, “learning” subsidies may be effective.
RISK MANAGEMENT PORTFOLIO

- Different tools may be required for different points in time for different subgroups of farmers.

- Managing risk through savings requires accumulation of wealth; similarly, access to credit may require accumulation of assets.

- Alternative mechanisms are being tested to diversify the tools available, such as emergency loans through BRAC in Bangladesh (contingent emergency credit that mimics index insurance and is released in the event of a shock for pre-approved clients).

SAFE MINIMUM STANDARDS

- At a minimum, we should make sure we are not making difficult situations worse.

- To assess safe minimum standards you need to know how often and how much a contract pays out.

- If paying for a particular product would, on average, negatively impact farmers, that product should not have been brought to market.
TECHNOLOGICAL INNOVATIONS

- Index Design
- Crop Masking
- Education
- Marketing
- Distribution
- Payouts
Presentation F.3:

Weather Risk Management Facility

Francesco Rispoli, IFAD/WFP

1. Project overview

2. Measuring performance

3. Conclusions and recommendations
1. Overview of the project

IFAD-WFP WRMF
Weather Risk Management Facility

- IFAD-WFP partnership on index insurance since 2008
- Focus: **smallholder farmers**
- Index insurance as one tool with potential to:
 - Reduce smallholder vulnerability
 - Enhance food security
 - Unlock access to credit and investment in agriculture
- Part of a holistic approach to agricultural development and disaster risk management
Researching new solutions - Remote sensing for index insurance

- IFAD-WFP WRMF project, **financed by AFD**, from **2012 to 2016**
- Evaluate **feasibility of remote sensing for index insurance** to benefit **smallholder farmers at village level**
- **Develop, test, validate, evaluate** opportunities and constraints of indices created by **different remote sensing methodologies**
- **Test-case Senegal**, but results to be disseminated across the industry, and feed into IFAD and WFP programmes

Project focus 1: End-users

- **End-user perspective**: consider requirements of stakeholders in operating and maintaining a viable and sustainable system of index insurance to cover smallholders

- Who are the **end-users** of RS index insurance?
 - Project focuses on **insurers** as the primary **end-users**
 - Project focuses on smallholder farmers as “clients” (**micro level** insurance schemes)
Regions of interest (test sites)

- Central Senegal
- 3 sites in: Diourbel, Nioro, Koussanar
- 20 km * 20 km test sites
- Groundnut; Millet; Maize

Remote Sensing Service Providers (RSSPs):
Approaches and data sources

<table>
<thead>
<tr>
<th>RSSP</th>
<th>Type of product/approach</th>
<th>Remote sensing data used</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARS</td>
<td>Relative evapotranspiration</td>
<td>MSG based relative ET (3km x 3km)</td>
</tr>
<tr>
<td>FewsNet</td>
<td>Actual evapotranspiration</td>
<td>MODIS based actual ET (1km x 1km)</td>
</tr>
<tr>
<td>Geoville</td>
<td>Radar-based estimation of soil moisture</td>
<td>ERS (50km x 50km) METOP ASCAT (50 km x 50 km; 25 km x 25 km resampled to 10 km x 10 km)</td>
</tr>
<tr>
<td></td>
<td>SoS based on Soil Water Index</td>
<td></td>
</tr>
<tr>
<td>IRI</td>
<td>Rainfall Estimates</td>
<td>NOAA based RFE2 ARC (10km x 10km)</td>
</tr>
<tr>
<td>ITC</td>
<td>Vegetation indices (NDVI)</td>
<td>SPOT-VGT NDVI (1km x 1km)</td>
</tr>
<tr>
<td>VITO</td>
<td>Vegetation indices (NDVI and fAPAR)</td>
<td>SPOT-VGT NDVI / fAPAR (1km x 1km)</td>
</tr>
<tr>
<td></td>
<td>SoS based on Rainfall Estimates</td>
<td>TAMSAT rainfall estimates (4 km x 4 km)</td>
</tr>
<tr>
<td>sarmap</td>
<td>Radar crop maps and SoS indicators</td>
<td>CosmoSkyMed (15m x 15m) Sentinel 1A (20m x 20m)</td>
</tr>
</tbody>
</table>
Input- and Output-based methodologies

A useful distinction is to classify remote sensing methodologies in “Input-based” and “Output-based”

- **Input-based** methodologies focus on measuring specific inputs to the production process (e.g. rainfall); other sources of production risk (e.g. pests and diseases) are not captured by the indices. *Rainfall Estimates and Soil Moisture are considered “Input-based”*

- **Output-based** methodologies measure variables connected to the production output (e.g. amount of vegetation, evapotranspiration) and, therefore, are likely to more closely match yield variations generated by drought and by other sources of risk. *Evapotranspiration, Vegetation Indices and SAR are considered “Output-based”*

Historical Performance Analysis and Product Testing

The performance assessment of the index structures developed by the RSSPs is composed of two parts:

1. **Historical Performance Analysis**: to show how well the methodologies can replicate crop loss over past years in specified areas. It indicates the **effectiveness of design and calibration**

2. **Product Testing**: gauges how well the methodologies can “predict” losses, analysing and assessing their performance in comparison with data specifically collected by the project (unfortunately limited observations available)
3. Conclusions and Recommendations
Conclusions

Conclusions have been divided into three main areas:

- Operational applicability
- Technical features
- Performance of remote sensing methodologies

Conclusions on Programming Features

1. Each of the methodologies tested fulfills the criterion of operational feasibility for insurance purposes
2. Two models currently exist for operationalizing remote sensing-based index insurance schemes: external service provision and transfer of capacity
3. Availability of expertise and dedicated service providers is a key challenge
4. Knowledge of land use, local farming practices, agronomy and agro-meteorology is necessary
5. Remote sensing data are increasingly available, but there are constraints on supplementary data in terms of availability and cost
6. The insurance regulatory authorities need to be involved and have, generally, been supportive of initiatives for remote sensing index insurance, provided consumer interests are properly protected
7. Consumer education will be a key component of success
8. Access to reinsurance has generally ceased to be a limiting factor in starting index insurance programmes
Conclusions on Technical Features

1. Yield variability between individual farmers in the ROIs can create challenges in operating index insurance.
2. Input-based and output-based methodologies offer different options for index insurance.
3. Ground signal is complex for output-based remote sensing interpretation of smallholder farms.
4. The methodologies cannot discriminate between yield performance of different crop types in highly mixed cropping areas at a local (village) level.
5. A key dimension in operating index insurance is the accurate definition of the unit areas of insurance (UAIs).
6. There are key operational considerations in determining the appropriate size of UAIs.
7. Basis risk remains the main concern to both insurers and insured farmers.

Conclusions on Performance /1

1. The lack of appropriate yield data and ground information is one of the primary challenges in designing and testing index insurance.
2. Product design has a critical influence on performance.
3. Project analyses show that, overall, the historical performance of the index insurance structures (i.e. their ability to replicate the past history of losses to be covered by the insurance proposition) is suboptimal.
4. Crop maps and masks can improve performance.
Conclusions on Performance /2

5. Methodologies based on vegetation indices seemed to track loss histories more accurately. The use of crop maps and masks, and the combination of remote sensing approaches may have contributed to the relatively better performance.

6. Product testing activities indicate that the index structures developed would not have tracked yield variability to a satisfactory level.

7. Performance of the remote sensing methodologies developed for the project varies across different crops and areas.

8. Remote sensing methodologies can be usefully adopted for identifying key stages of the crop life such as the start of season (SoS) or the end of season (EoS) date.

Recommendations

I. Additional research and development activities should be supported to further improve the potential of remote sensing for index insurance.

II. Further investment should be made in ground data collection protocols, capacity and systems.

III. Different tools and available data sources should be combined to develop suitable index insurance products.

IV. Future initiatives should focus on developing appropriate methodologies for segmenting UAlS to improve the performance of index insurance products.

V. Index insurance schemes based on remotely sensed data should carefully plan for measures aimed at mitigating the occurrence of basis risk events.

VI. The capacity of private and public remote sensing institutions should be built in order to fill current gaps in expertise and ensure future sustainability.
Download project publication:
https://www.ifad.org/topic/wrmf/overview/tags/rural_finance
IFAD -> Topics -> Rural Finance -> Weather Insurance

Project Contact:
Francesco Rispoli frispoli@ifad.org

Performance at regional level

Counting number of misperforming events

Cumulating payout deviations

% not acceptable mismatch + not correct

covariate mismatch

Diourbel
Koussanar
Nioro
Performance at crop level

Counting number of misperforming events

<table>
<thead>
<tr>
<th>% not acceptable mismatch + not correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARS</td>
</tr>
<tr>
<td>5%</td>
</tr>
</tbody>
</table>

Cumulating payout deviations

<table>
<thead>
<tr>
<th>covariate mismatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARS</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Example outputs of in-field data collection

Diourbel

groundnut yield (kg/ha)

- 1200
- 220-120
- 120-240
- 240-360
- >360

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>average</th>
<th>stdv</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1500</td>
<td>7.12</td>
<td>8.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Investing in rural people
Some findings on yields

- Massive variability of crop yields at individual farmer level, in same year in same villages
- Difficult to assess “normal” farmers actual yields by crop models
- “Yields gap” is important (optimal vs actual yields)
Panel G: Managing climate and market risks at macro and micro levels

This panel was added during the workshop to allow for further information-sharing around some Session 2 initiatives. The three initiatives look at ways to manage climate and market risks at various levels, from macro to micro levels, remote-sensing and community level interventions.

Presenter 1: Manoj Yadav, GIZ - RIICE
Presenter 2: Arun Khatri-Chhetri, CGIAR - Climate Smart Villages
Presenter 3: Norbert Tuyishime, EAFF – eGranary

Presentation G.1: RIICE
Manoj Yadav, GIZ

Presentation G.2: Climate Smart Villages
Arun Khatri-Chhetri, CGIAR

Presentation G.3: eGranary
Norbert Tuyishime, EAFF
Presentation G.1:

RIICE

Manoj Yadav, GIZ
Application of RIICE Technology in PMFBY insurance scheme
Providing objective and ad-hoc evidence on failed sowing and mid-season adversities

PMFBY Scheme Features
- Prevented/Failed Sowing
- On Account Payment
- CCE Based Compensation

RIICE
- Start of Season & Early Rice Area Maps
- Mid Season Yield Forecast
- End of the Season Yield Estimates & Smart CCE Sampling

Supporting insurance pay-outs to 22,500 farmers
2016/17: severe draught prevented farmers from planting

Navalur Kuttapattu village, Trichy District

Beneficiary Information*

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No of villages under Prevented Sowing</td>
<td>365</td>
</tr>
<tr>
<td>Area Insured (Ha.)</td>
<td>31,730</td>
</tr>
<tr>
<td>Farmers Benefitted</td>
<td>22,547</td>
</tr>
<tr>
<td>Average Area Insured per Farmer (Ha.)</td>
<td>1.41</td>
</tr>
<tr>
<td>Total Prevented Sowing paid</td>
<td>5.75 mn EUR</td>
</tr>
<tr>
<td>Average Prevented Sowing claim per farmer</td>
<td>255 EUR</td>
</tr>
</tbody>
</table>

*From AICR RIICE project partner
Providing Disaster Risk Assessment and Relief Support

2015: Seeds distributed to farmers after heavy floods caused crop losses

<table>
<thead>
<tr>
<th>Block</th>
<th>Flooded area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parangapatti</td>
<td>5817</td>
</tr>
<tr>
<td>Kurnoolpatti</td>
<td>4719</td>
</tr>
<tr>
<td>Melbhuwangiri</td>
<td>2398</td>
</tr>
<tr>
<td>Kumanatchi</td>
<td>1987</td>
</tr>
<tr>
<td>Keerapalayam</td>
<td>1790</td>
</tr>
<tr>
<td>Kattumangudi</td>
<td>627</td>
</tr>
<tr>
<td>Vridhuchalam</td>
<td>601</td>
</tr>
<tr>
<td>Cuddalore</td>
<td>596</td>
</tr>
<tr>
<td>Panvel</td>
<td>480</td>
</tr>
<tr>
<td>Kannaparamur</td>
<td>463</td>
</tr>
<tr>
<td>Annagramam</td>
<td>226</td>
</tr>
<tr>
<td>Nallur</td>
<td>209</td>
</tr>
<tr>
<td>Mangalore</td>
<td>159</td>
</tr>
</tbody>
</table>

Information delivered by RIICE and its national partner Tamil Nadu Agricultural University, helped relief efforts by distributing 50 tons of short duration paddy seeds in Tamil Nadu flood affected areas, after satellite data had been delivered to the state government.

Outlook and Potentials

- Build on the experience of Tamil Nadu in other RIICE geographies: Vietnam, Cambodia, Thailand, Odisha, Andhra Pradesh and potentially Indonesia.

- Data availability is one challenge in designing and implementing crop insurance schemes for small-holders. To achieve outreach complementary activities are needed:
 - Development of sustainable distribution and business models in cooperation with the private sector
 - Raise insurance awareness of small-holder farmers
Thank You

manoj.yadav@giz.de
+91-9971784600
Presentation G.2:

Climate Smart Villages

Arun Khatri-Chhetri, CGIAR

The Climate-Smart Village Approach: An Integrative Strategy for Agricultural Risks Management

Arun Khatri-Chhetri¹ and Pramod K Aggarwal¹

¹CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA), International Maize and Wheat Improvement Centre (CIMMYT), New Delhi, 110012, India.

Introduction

South Asia is amongst the most vulnerable regions to climate change. Rise in average temperatures, changes in rainfall patterns, and increasing frequency of extreme weather events such as severe droughts and floods have been observed in different agro-ecological zone of South Asia. These changes threaten region’s food security. Future agricultural systems also need to explore strategies to reduce GHG emissions wherever possible. Several technological, institutional and policy interventions have been proposed by the experts to manage these climatic risks and to mitigated GHG emissions. Action is needed to integrate top-down government schemes and scientific innovations with the stakeholder needs to build lasting resilience in South Asian agriculture.

Addressing the need for proven and effective climate-smart agricultural (CSA) options, Climate-Smart Village (CSV) approach was developed as a means to agricultural research for development (AR4D) in the context of climate change. It seeks to fill knowledge gaps and stimulate scaling of CSA across the vulnerable regions. The CSV approach is founded on the principles of participatory action research for grounding research on appropriate and location/context-specific enabling conditions, generating greater evidence of CSA effectiveness in a real-life setting and facilitating co-development of scaling mechanisms towards landscapes, subnational and national levels. CSA is seen in a broad sense, including practices, technologies, services and institutional options (Figure 1).
The CSV approach promotes local, incremental adaptation and transformative options and builds local capacities to continue to innovate, experiment, and adapt. The CSV approach aims to have a positive impact on agriculture-dependent communities and this includes ensuring the participation of women farmers and all social groups. Where possible, gender-differentiated aspects are assessed to ensure that prioritization and development of portfolios of climate-smart technologies, best practices, technologies, services, processes and institutional options address gender and social inclusion. In establishing a CSV AR4D site, the very first step is to build trust and partnerships amongst diverse stakeholders; and to get agreement and buy-in to a common approach. Figure 2 presents a systematic framework of building CSVs at the local level.

CSV Approach for Decision Support

The CSV provides five types of decision support to farmers and other stakeholders, and allows for the research that assesses the effectiveness of such support:

1. Village/community agricultural land use plans and contingency plans considering current and future climate risks, soil and socio-economic conditions, and markets.

2. CSA portfolios that do not become maladaptive in future climate and market scenarios – assessed using models.

3. Strategic guidance before the planting season, where feasible based on seasonal forecasts, on most suitable CSA practices, technologies, services, processes and institutional options. This is done in a participatory mode with local farmer groups and due consideration is given to institutions in the region such as farmers’ self-help groups, water-users associations, markets, and the availability of climate and agriculture development finance.

4. Tactical guidance to farmers on using real-time weather forecasts and value-added ICT based agro-advisories; on accessing good quality inputs and technologies for improving water/nutrient/energy use efficiencies, and on risk transfer through insurance mechanisms in case of crop and livestock losses.

Policy level guidance on policy barriers and policy options to unlock CSA and local and national development. This includes consideration of the financial needs to drive scaling.
Key criteria/indicators to assess the results of CSV approach:

<table>
<thead>
<tr>
<th>Output</th>
<th>Indicator</th>
</tr>
</thead>
</table>
| A. Economic | • Change in productivity of agriculture and allied sectors
 • Change in net return per hectare
 • Employment generation
 • Improvement in input use efficiency (water, nutrients and energy)
 • Coefficient of variation (CV) in yield and income overtime |
| B. Environmental | • Total area under climate-smart interventions
 • Improvement of environmental services
 • Change in total emission and emissions intensity |
| C. Social | • Strengthen capacity of women, youth and marginalized groups
 • Strengthen cooperation and networks in CSVs |
| D. Institutional | • Level of local institutions’ involvement
 • Coordination among different agriculture and allied sectors |
| E. Human well-being | • Climate resilient food systems and change in food security
 • Sustainable livelihoods |

Application of CSV Approach in South Asia

Started in 2012 in India, Bangladesh and Nepal, CSV approach aims to scale-up and scale-out appropriate options and draw out lessons for policy makers from local to global levels. Initial pilots include more than 50 CSVs in three countries. The testing of options is done in a multi-stakeholder collaborative platform at CSV sites that are generally a cluster of villages. The key focus of these CSV sites is to generate evidences on synergies as well as trade-offs between different options in terms of productivity, adaptation and mitigation. There is no fixed package of interventions or a one-size-fits-all approach. Options differ based on the CSV site, its agro-ecological characteristics, level of development, capacity and interest of the farmers and of the local government. The results of the CSV approach are usually a portfolio of CSA options and institutional and financial mechanisms. These are available to be scaled out/up by the national/sub-national governments, NGOs and private sector actors in regions with similar agro-ecological conditions.

A number of tools such as Climate-Smart Agriculture Prioritization (CSAP) toolkit, choice-experiments for CSA prioritization, CCAFS Mitigation Options Tool (CCAFS- MOT) for emission measurement, Gender and Social Inclusion Toolbox, crop simulation models, and climate analogues are used in the process. This pilot research done in India (Punjab, Haryana, Bihar, Maharashtra, and Telangana), Nepal and Bangladesh has yielded models of CSA portfolios that can be scaled up for building resilience.

Success of Scaling up CSV approach

To scale-up and out the results of CSV approach, multiple approaches have been followed:

1. Developing CSV sites as learning platforms for building evidences for CSA. Farmers, farmer's organizations, local governments, industry, and other stakeholders are involved with various CGIAR centers and National Agriculture Research System (NARS) in participatory evaluation of all options.
2. Organizing farmer’s fairs, video testimonials and village bulletins to scale out good CSA practices and for promoting farmer-to-farmer learnings.
3. Developing strategies to integrate the resultant portfolio of options from CSV sites with the agricultural development strategy/programs of the government and other donors.
Key Outcomes in South Asia:

- Total 29 Climate-Smart Agriculture Technologies are implemented through the Climate-Smart Village (CSV) approach, among them 15 technologies have GHG mitigation potential and 18 technologies can provide benefits to women farmers.
- Total 17,695 households have adopted multiple CSA technologies and practices in three countries (India, Nepal and Bangladesh) in the Pilot CSVs.
- Currently, the government of Haryana in India is implementing the results of CSV sites in 500 villages with a focus on resource conserving machinery, and sensors for optimizing fertilizer use and reducing GHG emissions. State Governments of Bihar, Maharashtra, Madhya Pradesh and Telangana in India have also proposed to finance the use of this approach for building resilience in agricultural systems in thousands of villages. ITC Limited, a multi-business private company of India is also implementing CSV approach to help agriculture-dependent communities in its outreach areas. ITC Limited is building 2000 CSVs in 6 six states (Madhya Pradesh, Maharashtra, Rajasthan, Bihar, Uttar Pradesh and Punjab) in India.
- Similarly, the Government of Nepal has started implementing the CSV approach as a part of the climate adaptation program in 14 climatically most vulnerable districts in 7 States (2 districts in each state). Regular communication and engagement with national and sub-national level policy makers and implementers, policy dialogues and workshops, and periodic visits of CSV sites has created awareness about the CSV approach in the region.

What’s Next for CSV Approach

- **Private Sector Promotion/Engagement:** CSA technology dissemination & marketing through ICT, Input supply, Credits and Insurance
- **Building Capacities for Change:** Orientation/capacity building support to government front line staff; farmer groups/cooperatives, community service organizations and private sectors
- **Cutting Edge Research & Knowledge Management:** More science based research; Knowledge generation and application; Diversity of CSA portfolio development
- **Country-Owned CSV Strategic Framework:** Aligning CSA/CSV approach to support implementation of National and Sub-National Agriculture Development Strategy and developing pathways for scaling up Climate Smart Agriculture through CSV approach
Presentation G.3:

eGranary

Norbert Tuyishime, Eastern African Farmers Federation

Content

1. Introduction/ membership
2. EAFF strategic plan 2013-2020
3. E-granary initiative
4. Achievements to date
EAFF Vision
A Prosperous and Cohesive Farming Community in Eastern Africa
Currently (> 20 million farmers)

10 countries; 24 apex organizations
Our scope is the Eastern Africa –
Membership scope in EAC; COMESA & IGAD....
- Producer co-operatives;
- Commodity Associations;
- Women organizations;
- Lobby & advocacy based;

- Launched in 2001 - operations from 2005
- Purpose – Regional Integration process
- Members are producers of crops; livestock; fisheries & Agroforestry

2. EAFF 2nd Strategic Plan (2013-2020)
Strengthen Farmers as key VC actors.

From 2012 EAFF shifted focus from doing just advocacy and policy work to agribusiness strategy with main aim of empowering member farmers economically through value addition, use of technology, market access and access to affordable financial services.

THE PROBLEMS

- **Lack of good and reliable market** for farm produce. Farmers lack access to regular and predictable large scale buyers that pay a premium;
- **Lack of financial products targeting smallholder farmers**. Farmers lack a traceable financial history that a credit product or insurance product can be based upon and therefore no access to necessary financial solutions
- **Poor earnings** due to bad market prices for their produce. Farmers do not benefit from speculation. Majority sell directly after the harvest season, when prices are lowest
- **Lack of comprehensive data on farmers**
- **Climate change** is projected to reduce agricultural yields and livestock productivity, worsening the effect of climate shocks on the food system.
PRODUCTS/SERVICES ON eGRANARY

eGRANARY is facilitating provision of Five key services to the agricultural sector – communication and e-extension services, quality inputs access, affordable financial services, crop insurance and Market linkage.

- **Assured buyer for farmers**
 - Farmers have assured income and can afford to pay for quality inputs, loans, premiums and subscription fees to eGRANARY

- **Farmers access to financial services and crop insurance products**
 - Financial companies earn interest and insurance premiums on tailored financial products to farmers

- **Access to climate smart production techniques and services**
 - Farmers receive capacity building solutions since they are the backbone of the program.

- **eGRANARY, collects data and manages all the strategic partners**
 - eGRANARY as a platform is accessible through the dumbest of the phone. Next phase, mobile and web applications
Achievements –

- Launched in Kenya (*492#) and Uganda (*284*492#) with FAO support. Currently on AGRA support.
- > 28,000 farmers registered in Kenya.
- Signed formal MoUs and agreements with off-taker, insurance company, financing institutions, financial technology company and equipment leasing company.
- Through the e-Granary in Kenya we have an active program on maize and soya beans value chains have been piloted on the platform.
- Currently we are in the second season and cumulatively we have issued **116,250$** worth of in-kind input loans for **36.35MT of certified seed** (Maize -26.15MT and soya – 10.2MT), **53.87MT fertilizer**, planted **3635 acres of crop**, farmers have paid cumulatively **premiums of 29,000$**;

Achievements –

- in the first season the sum assured was **150,000$** and after long drought we received compensation of **60,000$**, about **4,805 farmers** have been reached by the project so far. The in-kind loans varied from **29$ to 50$** per farmer.
- Initial harvest delivery done of Maize and Soya beans approximately 75.7 MT valued at USD 25, 681. The aggregation is on going;
- We plan to reach **>100,000 farmers** gradually; and to cover other countries in East Africa.
- Launch of the **EAFF LTD** to eventually oversee the operations of e-Granary.
Agricultural Risk Management: practices and lessons learned for development

K-Sharing & Learning Workshop
25th October 2017
IFAD HQ, Rome, Italy

Main Report
Volume 1

Platform for Agricultural Risk Management
Managing risks to improve farmers’ livelihoods

Knowledge Management